A184171 Number of partitions of n into an even number of distinct primes.
1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 4, 4, 5, 5, 4, 6, 5, 5, 6, 7, 7, 8, 7, 9, 8, 9, 8, 11, 11, 12, 10, 13, 12, 14, 14, 15, 16, 17, 16, 20, 19, 20, 20, 24, 22, 26, 23, 27, 27, 30, 28, 34, 33, 36, 34, 40, 37, 43, 41, 46, 46, 50, 47, 56, 55
Offset: 0
Keywords
Examples
a(33) = 5 because we have [31,2], [23,5,3,2], [19,7,5,2], [17,11,3,2], and [13,11,7,2].
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..2000 from Alois P. Heinz)
Programs
-
Maple
g := 1/2*(Product(1+z^ithprime(k), k = 1 .. 120)+Product(1-z^ithprime(k), k = 1 .. 120)): gser := series(g, z = 0, 110): seq(coeff(gser, z, n), n = 0 .. 85); # second Maple program with(numtheory): b:= proc(n, i) option remember; `if`(n=0, [1], `if`(i<1, [], zip((x, y)->x+y, b(n, i-1), [0, `if`(ithprime(i)>n, [], b(n-ithprime(i), i-1))[]], 0))) end: a:= proc(n) local l; l:= b(n, pi(n)); add(l[2*i-1], i=1..iquo(nops(l)+1,2)) end: seq(a(n), n=0..100); # Alois P. Heinz, Nov 15 2012
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0, {1}, If[i<1, {}, Plus @@ PadRight[{b[n, i-1], Join[{0}, If[Prime[i]>n, {}, b[n-Prime[i], i-1]]]}]]]; a[n_] := Module[{l}, l = b[n, PrimePi[n]]; Sum[l[[2*i-1]], {i, 1, Quotient[Length[l]+1, 2]}]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jan 30 2014, after Alois P. Heinz *)
-
PARI
parts(n, pred, y)={prod(k=1, n, 1 + if(pred(k), y*x^k + O(x*x^n), 0))} {my(n=80); Vec(parts(n, isprime, 1) + parts(n, isprime, -1))/2} \\ Andrew Howroyd, Dec 28 2017
Formula
G.f.: (1/2)*[Product_{k>=1} (1+z^prime(k)) + Product_{k>=1} (1-z^prime(k))].
a(n) = Sum_{k>=0} A219180(n,2*k). - Alois P. Heinz, Nov 15 2012