cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A184173 Triangle read by rows: T(n,k) is the sum of the k X k minors in the n X n Pascal matrix (0<=k<=n; the empty 0 X 0 minor is defined to be 1).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 15, 34, 15, 1, 1, 31, 144, 144, 31, 1, 1, 63, 574, 1155, 574, 63, 1, 1, 127, 2226, 8526, 8526, 2226, 127, 1, 1, 255, 8533, 60588, 113832, 60588, 8533, 255, 1, 1, 511, 32587, 424117, 1444608, 1444608, 424117, 32587, 511, 1
Offset: 0

Views

Author

Emeric Deutsch, Jan 12 2011

Keywords

Comments

Apparently, the sum of the entries in row n is A005157(n).

Examples

			T(3,1) = 7 because in the 3 X 3 Pascal matrix [1,0,0/1,1,0/1,2,1] the sum of the entries is 7.
Triangle starts:
  1;
  1,   1;
  1,   3,    1;
  1,   7,    7,    1;
  1,  15,   34,   15,    1;
  1,  31,  144,  144,   31,    1;
  1,  63,  574, 1155,  574,   63,   1;
  1, 127, 2226, 8526, 8526, 2226, 127, 1;
  ...
		

Crossrefs

Columns k=0-2 give: A000012, A000225, A306376.

Programs

  • Maple
    with(combinat): with(LinearAlgebra):
    T:= proc(n, k) option remember; `if`(n-k add(add(
          Determinant(SubMatrix(Matrix(n, (i, j)-> binomial(i-1, j-1)),
           i, j)), j in l), i in l))(choose([$1..n], k)))
        end:
    seq(seq(T(n, k), k=0..n), n=0..7);  # Alois P. Heinz, Feb 11 2019
  • Mathematica
    T[n_, k_] := T[n, k] = If[k == 0 || k == n, 1, Module[{l, M},
        l = Subsets[Range[n], {k}];
        M = Table[Binomial[i-1, j-1], {i, n}, {j, n}];
        Total[Det /@ Flatten[Table[M[[i, j]], {i, l}, {j, l}], 1]]]];
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 09 2019 updated Feb 29 2024 *)

Formula

The triangle is symmetric: T(n,k) = T(n,n-k).

Extensions

Typo corrected by Alois P. Heinz, Feb 11 2019