A184173 Triangle read by rows: T(n,k) is the sum of the k X k minors in the n X n Pascal matrix (0<=k<=n; the empty 0 X 0 minor is defined to be 1).
1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 15, 34, 15, 1, 1, 31, 144, 144, 31, 1, 1, 63, 574, 1155, 574, 63, 1, 1, 127, 2226, 8526, 8526, 2226, 127, 1, 1, 255, 8533, 60588, 113832, 60588, 8533, 255, 1, 1, 511, 32587, 424117, 1444608, 1444608, 424117, 32587, 511, 1
Offset: 0
Examples
T(3,1) = 7 because in the 3 X 3 Pascal matrix [1,0,0/1,1,0/1,2,1] the sum of the entries is 7. Triangle starts: 1; 1, 1; 1, 3, 1; 1, 7, 7, 1; 1, 15, 34, 15, 1; 1, 31, 144, 144, 31, 1; 1, 63, 574, 1155, 574, 63, 1; 1, 127, 2226, 8526, 8526, 2226, 127, 1; ...
Links
- Alois P. Heinz, Rows n = 0..12, flattened
- Wikipedia, Minor (linear algebra)
Programs
-
Maple
with(combinat): with(LinearAlgebra): T:= proc(n, k) option remember; `if`(n-k
add(add( Determinant(SubMatrix(Matrix(n, (i, j)-> binomial(i-1, j-1)), i, j)), j in l), i in l))(choose([$1..n], k))) end: seq(seq(T(n, k), k=0..n), n=0..7); # Alois P. Heinz, Feb 11 2019 -
Mathematica
T[n_, k_] := T[n, k] = If[k == 0 || k == n, 1, Module[{l, M}, l = Subsets[Range[n], {k}]; M = Table[Binomial[i-1, j-1], {i, n}, {j, n}]; Total[Det /@ Flatten[Table[M[[i, j]], {i, l}, {j, l}], 1]]]]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 09 2019 updated Feb 29 2024 *)
Formula
The triangle is symmetric: T(n,k) = T(n,n-k).
Extensions
Typo corrected by Alois P. Heinz, Feb 11 2019
Comments