cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A184277 Table read by antidiagonals: T(n,k) = number of distinct n X k toroidal 0..3 arrays.

Original entry on oeis.org

4, 10, 10, 24, 76, 24, 70, 700, 700, 70, 208, 8296, 29184, 8296, 208, 700, 104968, 1398500, 1398500, 104968, 700, 2344, 1399176, 71582944, 268447936, 71582944, 1399176, 2344, 8230, 19175140, 3817765120, 54975633976, 54975633976
Offset: 1

Views

Author

R. H. Hardin, Jan 10 2011

Keywords

Examples

			Table starts
      4        10           24             70            208            700
     10        76          700           8296         104968        1399176
     24       700        29184        1398500       71582944     3817765120
     70      8296      1398500      268447936    54975633976 11728126132976
    208    104968     71582944    54975633976 45035996274688
    700   1399176   3817765120 11728126132976
   2344  19175140 209430787824
   8230 268447816
  29144
		

Crossrefs

Columns 1-5 are A001868, A184273, A184274, A184275, A184276.
Main diagonal is A184272.

Programs

  • Mathematica
    T[n_, k_] := (1/(n*k))*Sum[Sum[EulerPhi[c]*EulerPhi[d]*4^(n*k/LCM[c, d]), {d, Divisors[k]}], {c, Divisors[n]}];
    Table[T[n-k+1, k], {n, 1, 9}, {k, 1, n}] // Flatten (* Jean-François Alcover, Oct 31 2017, after Andrew Howroyd *)
  • PARI
    T(n, k) = (1/(n*k)) * sumdiv(n, c, sumdiv(k, d, eulerphi(c) * eulerphi(d) * 4^(n*k/lcm(c,d)))); \\ Andrew Howroyd, Sep 27 2017

Formula

T(n,k) = (1/(n*k)) * Sum_{c|n} Sum_{d|k} phi(c) * phi(d) * 4^(n*k/lcm(c,d)). - Andrew Howroyd, Sep 27 2017