cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A184288 Table read by antidiagonals: T(n,k) = number of distinct n X k toroidal 0..4 arrays.

Original entry on oeis.org

5, 15, 15, 45, 175, 45, 165, 2635, 2635, 165, 629, 49075, 217125, 49075, 629, 2635, 976887, 20346485, 20346485, 976887, 2635, 11165, 20349075, 2034505661, 9536816875, 2034505661, 20349075, 11165, 48915, 435970995, 211927741375
Offset: 1

Views

Author

R. H. Hardin, Jan 10 2011

Keywords

Examples

			Table starts
      5        15           45           165           629         2635
     15       175         2635         49075        976887     20349075
     45      2635       217125      20346485    2034505661 211927741375
    165     49075     20346485    9536816875 4768372070757
    629    976887   2034505661 4768372070757
   2635  20349075 211927741375
  11165 435970995
  48915
		

Crossrefs

Columns 1-4 are A001869, A184286, A184287, A184288.

Programs

  • Mathematica
    T[n_, k_] := (1/(n*k))*Sum[Sum[EulerPhi[c] * EulerPhi[d] * 5^(n*k/LCM[c, d]), {d, Divisors[k]}], {c, Divisors[n]}];
    Table[T[n - k + 1, k], {n, 1, 9}, {k, 1, n}] // Flatten (* Jean-François Alcover, Oct 31 2017, after Andrew Howroyd *)
  • PARI
    T(n, k) = (1/(n*k)) * sumdiv(n, c, sumdiv(k, d, eulerphi(c) * eulerphi(d) * 5^(n*k/lcm(c,d)))); \\ Andrew Howroyd, Sep 27 2017

Formula

T(n,k) = (1/(n*k)) * Sum_{c|n} Sum_{d|k} phi(c) * phi(d) * 5^(n*k/lcm(c,d)). - Andrew Howroyd, Sep 27 2017