A184392 a(n) is the product of palindromic divisors of n.
1, 2, 3, 8, 5, 36, 7, 64, 27, 10, 11, 144, 1, 14, 15, 64, 1, 324, 1, 40, 21, 484, 1, 1152, 5, 2, 27, 56, 1, 180, 1, 64, 1089, 2, 35, 1296, 1, 2, 3, 320, 1, 252, 1, 85184, 135, 2, 1, 1152, 7, 10, 3, 8, 1, 324, 3025, 448, 3, 2, 1, 720, 1, 2, 189, 64, 5, 18974736, 1, 8, 3, 70, 1, 10368, 1, 2, 15, 8, 5929, 36, 1, 320, 27, 2, 1, 1008, 5, 2, 3, 59969536, 1, 1620, 7, 8, 3, 2, 5, 1152, 1, 14, 970299, 40
Offset: 1
Examples
For n = 20, set of palindromic divisors is {1, 2, 4, 5}; a(12) = 1*2*4*5 = 40.
Links
- Indranil Ghosh, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
palQ[n_]:=Module[{idn=IntegerDigits[n]}, idn==Reverse[idn]]; f[n_]:=Times@@Select[Divisors[n],palQ]; Table[f[n],{n,100}] (* Harvey P. Dale, Jan 21 2011 *)
-
Python
def ispal(n): return n==int(str(n)[::-1]) def A184392(n): s=1 for i in range(1, n+1): if n%i==0 and ispal(i): s*=i return s # Indranil Ghosh, Feb 10 2017
Extensions
More terms from Harvey P. Dale, Jan 21 2011