A184478 Lower s-Wythoff sequence, where s(n) = 3n + 1. Complement of A184479.
1, 2, 3, 4, 6, 7, 8, 10, 11, 12, 14, 15, 16, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 44, 45, 46, 47, 49, 50, 51, 53, 54, 55, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 74, 75, 76, 77, 79, 80, 81, 83, 84, 85, 87, 88, 89, 90, 92, 93, 94, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107, 109, 110, 111, 113, 114, 115, 117, 118, 119, 120, 122, 123, 124, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 139, 140, 141, 143, 144, 145, 146, 148, 149, 150, 152, 153, 154, 156
Offset: 1
Keywords
Programs
-
Magma
[(Floor(n*(-1+Sqrt(13))/2))+1: n in [0..120]]; // Vincenzo Librandi, Jan 08 2019
-
Maple
a:=n->floor(n*(-1+sqrt(13))/2+1): seq(a(n),n=0..120); # Muniru A Asiru, Jan 08 2019
-
Mathematica
k=3; r=-1; d=Sqrt[4+k^2]; a[n_]:=Floor[(1/2)(d+2-k)(n+r/(d+2))]; b[n_]:=Floor[(1/2)(d+2+k)(n-r/(d+2))]; Table[a[n],{n,120}] Table[b[n],{n,120}] Table[(Floor[n (-1 + Sqrt[13]) / 2]) + 1, {n, 0, 120}] (* Vincenzo Librandi, Jan 08 2019 *)
-
PARI
A184478_upto(N, s(n)=3*n+1, a=[1], U=a)={while(a[#a]
1&&U[2]==U[1]+1, U=U[^1]); a=concat(a, U[1]+1)); a} \\ M. F. Hasler, Jan 07 2019
Formula
a(n) = A184479(n) - s(n). - M. F. Hasler, Jan 07 2019
Comments