A184516 Lower s-Wythoff sequence, where s=4n-2. Complement of A184517.
1, 2, 4, 5, 6, 7, 9, 10, 11, 12, 13, 15, 16, 17, 18, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 69, 70, 72, 73, 74, 75, 77, 78, 79, 80, 81, 83, 84, 85, 86, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 100, 101, 102, 104, 105, 106, 107, 109, 110, 111, 112, 114, 115, 116, 117, 119, 120, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 138, 140, 141, 142, 143, 145, 146, 147, 148
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- Clark Kimberling, Beatty Sequences and Wythoff Sequences, Generalized, Fibonacci Quart. 49 (2011), no. 3, 195-200.
Programs
-
Magma
[Floor((Sqrt(5)-1)*(n + 1/(1+Sqrt(5)))): n in [1..100]]; // G. C. Greubel, Nov 16 2018
-
Mathematica
k = 4; r = 2; d = Sqrt[4 + k^2]; a[n_] := Floor[(1/2) (d + 2 - k) (n + r/(d + 2))]; b[n_] := Floor[(1/2) (d + 2 + k) (n - r/(d + 2))]; Table[a[n], {n, 120}] (* A184516 *) Table[b[n], {n, 120}] (* A184517 *)
-
PARI
vector(100, n, floor((sqrt(5)-1)*(n + 1/(1+sqrt(5))))) \\ G. C. Greubel, Nov 16 2018
-
Sage
[floor((sqrt(5)-1)*(n + 1/(1+sqrt(5)))) for n in (1..100)] # G. C. Greubel, Nov 16 2018
Comments