A184517 Upper s-Wythoff sequence, where s=4n-2. Complement of A184516.
3, 8, 14, 19, 24, 29, 35, 40, 45, 50, 55, 61, 66, 71, 76, 82, 87, 92, 97, 103, 108, 113, 118, 124, 129, 134, 139, 144, 150, 155, 160, 165, 171, 176, 181, 186, 192, 197, 202, 207, 213, 218, 223, 228, 234, 239, 244, 249, 254, 260, 265, 270, 275, 281, 286, 291, 296, 302, 307, 312, 317, 323, 328, 333, 338, 343, 349, 354, 359, 364, 370, 375, 380, 385, 391, 396, 401, 406, 412, 417, 422, 427, 432, 438, 443, 448, 453, 459, 464, 469, 474, 480, 485, 490, 495, 501, 506
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- Clark Kimberling, Beatty Sequences and Wythoff Sequences, Generalized, Fibonacci Quart. 49 (2011), no. 3, 195-200.
Programs
-
Magma
[Floor((3+Sqrt(5))*(n - 1/(1+Sqrt(5)))): n in [1..100]]; // G. C. Greubel, Nov 16 2018
-
Mathematica
k = 4; r = 2; d = Sqrt[4 + k^2]; a[n_] := Floor[(1/2) (d + 2 - k) (n + r/(d + 2))]; b[n_] := Floor[(1/2) (d + 2 + k) (n - r/(d + 2))]; Table[a[n], {n, 120}] (* A184516 *) Table[b[n], {n, 120}] (* A184517 *) (* alternate program *) Table[Ceiling[(2 n - 1) GoldenRatio^2], {n, 1, 120}] (* Jon Maiga, Nov 15 2018 *)
-
PARI
vector(100, n, floor((3+sqrt(5))*(n - 1/(1+sqrt(5))))) \\ G. C. Greubel, Nov 16 2018
-
Sage
[floor((3+sqrt(5))*(n - 1/(1+sqrt(5)))) for n in (1..100)] # G. C. Greubel, Nov 16 2018
Comments