A184548 T(n,k)=Number of (n+2)X(k+2) binary arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order.
45, 89, 89, 147, 193, 147, 220, 340, 340, 220, 309, 537, 631, 537, 309, 415, 792, 1048, 1048, 792, 415, 539, 1114, 1627, 1837, 1627, 1114, 539, 682, 1513, 2413, 3024, 3024, 2413, 1513, 682, 845, 2000, 3461, 4774, 5313, 4774, 3461, 2000, 845, 1029, 2587, 4837
Offset: 1
Examples
Some solutions for 5X4 ..0..0..0..1....0..0..0..1....0..0..0..0....0..0..0..1....0..0..0..0 ..0..0..1..1....0..0..0..1....0..0..0..0....0..0..1..1....0..0..0..0 ..0..0..1..1....0..0..1..1....0..0..0..0....0..0..1..1....0..0..0..0 ..0..1..0..0....0..1..0..1....0..0..0..1....0..1..1..1....0..0..1..1 ..1..1..0..0....1..1..0..1....1..1..1..0....0..1..1..1....1..1..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..9378
- R. H. Hardin, Polynomials for columns 1-8
Formula
Empirical: T(n,k) is a polynomial of degree k+2 in n, for fixed k.
Let T(n,k,z) be the number of (n+2)X(k+2) 0..z arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order.
Then empirically T(n,k,z) is a polynomial of degree z*k + z*(z+1)*(z+5)/6 in n, for fixed k.
Comments