cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A184625 a(n) = floor((n-h)*s +h), where s=2+sqrt(2) and h=-1/4; complement of A184624.

Original entry on oeis.org

4, 7, 10, 14, 17, 21, 24, 27, 31, 34, 38, 41, 44, 48, 51, 55, 58, 62, 65, 68, 72, 75, 79, 82, 85, 89, 92, 96, 99, 103, 106, 109, 113, 116, 120, 123, 126, 130, 133, 137, 140, 144, 147, 150, 154, 157, 161, 164, 167, 171, 174, 178, 181, 184, 188, 191, 195, 198, 202, 205, 208, 212, 215, 219, 222, 225, 229
Offset: 1

Views

Author

Clark Kimberling, Jan 18 2011

Keywords

Crossrefs

Programs

  • Magma
    [Floor(n*Sqrt(2)/(Sqrt(2) - 1) + Sqrt(2)/(4*Sqrt(2) - 4) - 1/4): n in [1..100]]; // G. C. Greubel, Apr 20 2018
  • Mathematica
    r=2^(1/2); h=-1/4; s=r/(r-1);
    Table[Floor[n*r+h],{n,1,120}]  (* A184624 *)
    Table[Floor[n*s+h-h*s],{n,1,120}]  (* A184625 *)
  • PARI
    for(n=1, 100, print1(floor(n*sqrt(2)/(sqrt(2)-1) + sqrt(2)/(4*sqrt(2) - 4) - 1/4), ", ")) \\ G. C. Greubel, Apr 20 2018
    

Formula

a(n) = floor[(n-h)*s +h], where s=2+sqrt(2) and h=-1/4.
Showing 1-1 of 1 results.