cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A184629 Floor(1/{(5+n^4)^(1/4)}), where {}=fractional part.

Original entry on oeis.org

1, 7, 22, 51, 100, 173, 274, 409, 583, 800, 1064, 1382, 1757, 2195, 2700, 3276, 3930, 4665, 5487, 6400, 7408, 8518, 9733, 11059, 12500, 14060, 15746, 17561, 19511, 21600, 23832, 26214, 28749, 31443, 34300, 37324, 40522, 43897, 47455, 51200, 55136, 59270, 63605, 68147, 72900, 77868, 83058, 88473, 94119, 100000
Offset: 1

Views

Author

Clark Kimberling, Jan 18 2011

Keywords

Crossrefs

Cf. A184536.

Programs

  • Mathematica
    p[n_]:=FractionalPart[(n^4+5)^(1/4)]; q[n_]:=Floor[1/p[n]];
      Table[q[n], {n, 1, 80}]
      FindLinearRecurrence[Table[q[n], {n, 1, 1000}]]
    Join[{1, 7, 22, 51, 100, 173}, LinearRecurrence[{3, -3, 1, 0, 1, -3, 3, -1}, {274, 409, 583, 800, 1064, 1382, 1757, 2195}, 44]] (* Ray Chandler, Aug 01 2015 *)

Formula

a(n)=floor(1/{(5+n^4)^(1/4)}), where {}=fractional part.
It appears that a(n)=3a(n-1)-3a(n-2)+a(n-3)+a(n-5)-3a(n-6)+3a(n-7)-a(n-8) for n>=15.