A184629 Floor(1/{(5+n^4)^(1/4)}), where {}=fractional part.
1, 7, 22, 51, 100, 173, 274, 409, 583, 800, 1064, 1382, 1757, 2195, 2700, 3276, 3930, 4665, 5487, 6400, 7408, 8518, 9733, 11059, 12500, 14060, 15746, 17561, 19511, 21600, 23832, 26214, 28749, 31443, 34300, 37324, 40522, 43897, 47455, 51200, 55136, 59270, 63605, 68147, 72900, 77868, 83058, 88473, 94119, 100000
Offset: 1
Keywords
Links
- Ray Chandler, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (3, -3, 1, 0, 1, -3, 3, -1).
Crossrefs
Cf. A184536.
Programs
-
Mathematica
p[n_]:=FractionalPart[(n^4+5)^(1/4)]; q[n_]:=Floor[1/p[n]]; Table[q[n], {n, 1, 80}] FindLinearRecurrence[Table[q[n], {n, 1, 1000}]] Join[{1, 7, 22, 51, 100, 173}, LinearRecurrence[{3, -3, 1, 0, 1, -3, 3, -1}, {274, 409, 583, 800, 1064, 1382, 1757, 2195}, 44]] (* Ray Chandler, Aug 01 2015 *)
Formula
a(n)=floor(1/{(5+n^4)^(1/4)}), where {}=fractional part.
It appears that a(n)=3a(n-1)-3a(n-2)+a(n-3)+a(n-5)-3a(n-6)+3a(n-7)-a(n-8) for n>=15.