A184675 a(n) = n + floor(sqrt(n) + sqrt(n+1)); complement of A184674.
3, 5, 6, 8, 9, 11, 12, 13, 15, 16, 17, 19, 20, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83
Offset: 1
Programs
-
Maple
A184675:=n->n + floor(sqrt(4*n + 1)); seq(A184675(n), n=1..50); # Wesley Ivan Hurt, Mar 01 2014
-
Mathematica
a[n_]:=n+Floor[(n/2-1/(2n))^2]; b[n_]:=n+Floor[n^(1/2)+(n+1)^(1/2)]; Table[a[n],{n,1,120}] (* A184674 *) Table[b[n],{n,1,120}] (* A184675 *)
Formula
a(n) = n + floor(sqrt(n) + sqrt(n+1)).
a(n) = n + floor(sqrt(4*n + 1)). [Mircea Merca, Feb 05 2012]