cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A184777 Primes of the form 2k + floor(k*sqrt(2)).

Original entry on oeis.org

3, 13, 17, 23, 37, 47, 61, 71, 109, 139, 157, 163, 167, 191, 211, 269, 283, 293, 307, 317, 331, 389, 409, 419, 433, 443, 457, 467, 491, 563, 577, 587, 607, 617, 631, 641, 727, 751, 757, 761, 809, 829, 839, 853, 863, 877, 887, 911, 983, 1031, 1051, 1061, 1109, 1123, 1171, 1181, 1201, 1229, 1249, 1259, 1283, 1297, 1307, 1321, 1399, 1423, 1427, 1433, 1447, 1451, 1471, 1481, 1543, 1553, 1567, 1597, 1601, 1621, 1669, 1693, 1741, 1789, 1823, 1847, 1867, 1877, 1901
Offset: 1

Views

Author

Clark Kimberling, Jan 21 2011

Keywords

Examples

			See A184774.
		

Crossrefs

Programs

  • Mathematica
    r=2^(1/2); s=r/(r-1);
    a[n_]:=Floor [n*r];  (* A001951 *)
    b[n_]:=Floor [n*s];  (* A001952 *)
    Table[a[n],{n,1,120}]
    t1={}; Do[If[PrimeQ[a[n]], AppendTo[t1,a[n]]], {n,1,600}]; t1
    t2={}; Do[If[PrimeQ[a[n]], AppendTo[t2,n]], {n,1,600}]; t2
    t3={}; Do[If[MemberQ[t1, Prime[n]], AppendTo[t3,n]],{n,1,300}]; t3
    t4={}; Do[If[PrimeQ[b[n]], AppendTo[t4,b[n]]],{n,1,600}]; t4
    t5={}; Do[If[PrimeQ[b[n]], AppendTo[t5,n]],{n,1,600}]; t5
    t6={}; Do[If[MemberQ[t4, Prime[n]], AppendTo[t6,n]],{n,1,300}]; t6
    (* the lists t1,t2,t3,t4,t5,t6 match the sequences
    A184774, A184775, A184776 ,A184777, A184778, A184779 *)
    Select[Table[2k+Floor[k Sqrt[2]],{k,1000}],PrimeQ] (* Harvey P. Dale, Mar 06 2025 *)
  • Python
    from math import isqrt
    from itertools import count, islice
    from sympy import isprime
    def A184777_gen(): # generator of terms
        return filter(isprime,((k<<1)+isqrt(k**2<<1) for k in count(1)))
    A184777_list = list(islice(A184777_gen(),25)) # Chai Wah Wu, Jul 28 2022