A184777 Primes of the form 2k + floor(k*sqrt(2)).
3, 13, 17, 23, 37, 47, 61, 71, 109, 139, 157, 163, 167, 191, 211, 269, 283, 293, 307, 317, 331, 389, 409, 419, 433, 443, 457, 467, 491, 563, 577, 587, 607, 617, 631, 641, 727, 751, 757, 761, 809, 829, 839, 853, 863, 877, 887, 911, 983, 1031, 1051, 1061, 1109, 1123, 1171, 1181, 1201, 1229, 1249, 1259, 1283, 1297, 1307, 1321, 1399, 1423, 1427, 1433, 1447, 1451, 1471, 1481, 1543, 1553, 1567, 1597, 1601, 1621, 1669, 1693, 1741, 1789, 1823, 1847, 1867, 1877, 1901
Offset: 1
Keywords
Examples
See A184774.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
r=2^(1/2); s=r/(r-1); a[n_]:=Floor [n*r]; (* A001951 *) b[n_]:=Floor [n*s]; (* A001952 *) Table[a[n],{n,1,120}] t1={}; Do[If[PrimeQ[a[n]], AppendTo[t1,a[n]]], {n,1,600}]; t1 t2={}; Do[If[PrimeQ[a[n]], AppendTo[t2,n]], {n,1,600}]; t2 t3={}; Do[If[MemberQ[t1, Prime[n]], AppendTo[t3,n]],{n,1,300}]; t3 t4={}; Do[If[PrimeQ[b[n]], AppendTo[t4,b[n]]],{n,1,600}]; t4 t5={}; Do[If[PrimeQ[b[n]], AppendTo[t5,n]],{n,1,600}]; t5 t6={}; Do[If[MemberQ[t4, Prime[n]], AppendTo[t6,n]],{n,1,300}]; t6 (* the lists t1,t2,t3,t4,t5,t6 match the sequences A184774, A184775, A184776 ,A184777, A184778, A184779 *) Select[Table[2k+Floor[k Sqrt[2]],{k,1000}],PrimeQ] (* Harvey P. Dale, Mar 06 2025 *)
-
Python
from math import isqrt from itertools import count, islice from sympy import isprime def A184777_gen(): # generator of terms return filter(isprime,((k<<1)+isqrt(k**2<<1) for k in count(1))) A184777_list = list(islice(A184777_gen(),25)) # Chai Wah Wu, Jul 28 2022