A184774 Primes of the form floor(k*sqrt(2)).
2, 5, 7, 11, 19, 29, 31, 41, 43, 53, 59, 67, 73, 79, 83, 89, 97, 101, 103, 107, 113, 127, 131, 137, 149, 151, 173, 179, 181, 193, 197, 199, 223, 227, 229, 233, 239, 241, 251, 257, 263, 271, 277, 281, 311, 313, 337, 347, 349, 353, 359, 367, 373, 379, 383, 397
Offset: 1
A184778 Numbers k such that 2k + floor(k*sqrt(2)) is prime.
1, 4, 5, 7, 11, 14, 18, 21, 32, 41, 46, 48, 49, 56, 62, 79, 83, 86, 90, 93, 97, 114, 120, 123, 127, 130, 134, 137, 144, 165, 169, 172, 178, 181, 185, 188, 213, 220, 222, 223, 237, 243, 246, 250, 253, 257, 260, 267, 288, 302, 308, 311, 325, 329, 343, 346, 352, 360, 366, 369, 376
Offset: 1
Keywords
Examples
See A184774.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
r=2^(1/2); s=r/(r-1); a[n_]:=Floor [n*r]; (* A001951 *) b[n_]:=Floor [n*s]; (* A001952 *) Table[a[n],{n,1,120}] t1={}; Do[If[PrimeQ[a[n]], AppendTo[t1,a[n]]], {n,1,600}]; t1 t2={}; Do[If[PrimeQ[a[n]], AppendTo[t2,n]], {n,1,600}]; t2 t3={}; Do[If[MemberQ[t1, Prime[n]], AppendTo[t3,n]],{n,1,300}]; t3 t4={}; Do[If[PrimeQ[b[n]], AppendTo[t4,b[n]]],{n,1,600}]; t4 t5={}; Do[If[PrimeQ[b[n]], AppendTo[t5,n]],{n,1,600}]; t5 t6={}; Do[If[MemberQ[t4, Prime[n]], AppendTo[t6,n]],{n,1,300}]; t6 (* the lists t1,t2,t3,t4,t5,t6 match the sequences A184774, A184775, A184776 ,A184777, A184778, A184779 *)
-
PARI
is(n)=isprime(sqrtint(2*n^2)+2*n) \\ Charles R Greathouse IV, May 22 2017
-
Python
from itertools import count, islice from math import isqrt from sympy import isprime def A184778_gen(): # generator of terms return filter(lambda k:isprime((k<<1)+isqrt(k**2<<1)), count(1)) A184778_list = list(islice(A184778_gen(),25)) # Chai Wah Wu, Jul 28 2022
A184775 Numbers k such that floor(k*sqrt(2)) is prime.
2, 4, 5, 8, 14, 21, 22, 29, 31, 38, 42, 48, 52, 56, 59, 63, 69, 72, 73, 76, 80, 90, 93, 97, 106, 107, 123, 127, 128, 137, 140, 141, 158, 161, 162, 165, 169, 171, 178, 182, 186, 192, 196, 199, 220, 222, 239, 246, 247, 250, 254, 260, 264, 268, 271, 281, 284, 298, 305, 311, 318
Offset: 1
Comments
Chua, Park, & Smith prove a general result that implies that, for any m, there is a constant C(m) such that a(n+m) - a(n) < C(m) infinitely often. - Charles R Greathouse IV, Jul 01 2022
Examples
See A184774.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- Lynn Chua, Soohyun Park, and Geoffrey D. Smith, Bounded gaps between primes in special sequences, Proceedings of the AMS, Volume 143, Number 11 (November 2015), pp. 4597-4611. arXiv:1407.1747 [math.NT]
Programs
-
Mathematica
r=2^(1/2); s=r/(r-1); a[n_]:=Floor [n*r]; (* A001951 *) b[n_]:=Floor [n*s]; (* A001952 *) Table[a[n],{n,1,120}] t1={}; Do[If[PrimeQ[a[n]], AppendTo[t1,a[n]]], {n,1,600}]; t1 t2={}; Do[If[PrimeQ[a[n]], AppendTo[t2,n]], {n,1,600}]; t2 t3={}; Do[If[MemberQ[t1, Prime[n]], AppendTo[t3,n]],{n,1,300}]; t3 t4={}; Do[If[PrimeQ[b[n]], AppendTo[t4,b[n]]],{n,1,600}]; t4 t5={}; Do[If[PrimeQ[b[n]], AppendTo[t5,n]],{n,1,600}]; t5 t6={}; Do[If[MemberQ[t4, Prime[n]], AppendTo[t6,n]],{n,1,300}]; t6 (* the lists t1,t2,t3,t4,t5,t6 match the sequences A184774, A184775, A184776 ,A184777, A184778, A184779 *)
-
PARI
isok(n) = isprime(floor(n*sqrt(2))); \\ Michel Marcus, Apr 10 2018
-
PARI
is(n)=isprime(sqrtint(2*n^2)) \\ Charles R Greathouse IV, Jul 01 2022
-
Python
from itertools import count, islice from math import isqrt from sympy import isprime def A184775_gen(): # generator of terms return filter(lambda k:isprime(isqrt(k**2<<1)), count(1)) A184775_list = list(islice(A184775_gen(),25)) # Chai Wah Wu, Jul 28 2022
A184776 Numbers m such that prime(m) is of the form floor(k*sqrt(2)); complement of A184779.
1, 3, 4, 5, 8, 10, 11, 13, 14, 16, 17, 19, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 35, 36, 40, 41, 42, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 64, 65, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 82, 83, 85, 87, 89, 90, 92, 93, 95, 96, 97, 98, 99, 100, 101, 102, 104, 105, 108, 109, 110, 112, 114, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 136, 137, 138, 139, 141, 142, 143, 144
Offset: 1
Keywords
Examples
See A184774.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
r=2^(1/2); s=r/(r-1); a[n_]:=Floor [n*r]; (* A001951 *) b[n_]:=Floor [n*s]; (* A001952 *) Table[a[n],{n,1,120}] t1={}; Do[If[PrimeQ[a[n]], AppendTo[t1,a[n]]], {n,1,600}]; t1 t2={}; Do[If[PrimeQ[a[n]], AppendTo[t2,n]], {n,1,600}]; t2 t3={}; Do[If[MemberQ[t1, Prime[n]], AppendTo[t3,n]],{n,1,300}]; t3 t4={}; Do[If[PrimeQ[b[n]], AppendTo[t4,b[n]]],{n,1,600}]; t4 t5={}; Do[If[PrimeQ[b[n]], AppendTo[t5,n]],{n,1,600}]; t5 t6={}; Do[If[MemberQ[t4, Prime[n]], AppendTo[t6,n]],{n,1,300}]; t6 (* the lists t1,t2,t3,t4,t5,t6 match the sequences A184774, A184775, A184776 ,A184777, A184778, A184779 *)
-
Python
from itertools import count, islice from math import isqrt from sympy import primepi, isprime def A184776_gen(): # generator of terms return map(primepi,filter(isprime,(isqrt(k**2<<1) for k in count(1)))) A184776_list = list(islice(A184776_gen(),25)) # Chai Wah Wu, Jul 28 2022
A184779 Numbers m such that prime(m) is of the form 2k + floor(k*sqrt(2)); complement of A184776.
2, 6, 7, 9, 12, 15, 18, 20, 29, 34, 37, 38, 39, 43, 47, 57, 61, 62, 63, 66, 67, 77, 80, 81, 84, 86, 88, 91, 94, 103, 106, 107, 111, 113, 115, 116, 129, 133, 134, 135, 140, 145, 146, 147, 150, 151, 154, 156, 166, 173, 177, 178, 186, 188, 193, 194, 197, 201, 204, 205, 208
Offset: 1
Keywords
Examples
See A184774.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
r=2^(1/2); s=r/(r-1); a[n_]:=Floor [n*r]; (* A001951 *) b[n_]:=Floor [n*s]; (* A001952 *) Table[a[n],{n,1,120}] t1={}; Do[If[PrimeQ[a[n]], AppendTo[t1,a[n]]], {n,1,600}]; t1 t2={}; Do[If[PrimeQ[a[n]], AppendTo[t2,n]], {n,1,600}]; t2 t3={}; Do[If[MemberQ[t1, Prime[n]], AppendTo[t3,n]],{n,1,300}]; t3 t4={}; Do[If[PrimeQ[b[n]], AppendTo[t4,b[n]]],{n,1,600}]; t4 t5={}; Do[If[PrimeQ[b[n]], AppendTo[t5,n]],{n,1,600}]; t5 t6={}; Do[If[MemberQ[t4, Prime[n]], AppendTo[t6,n]],{n,1,300}]; t6 (* the lists t1,t2,t3,t4,t5,t6 match the sequences A184774, A184775, A184776 ,A184777, A184778, A184779 *)
-
Python
from math import isqrt from itertools import count, islice from sympy import isprime, primepi def A184779_gen(): # generator of terms return map(primepi,filter(isprime,((k<<1)+isqrt(k**2<<1) for k in count(1)))) A184779_list = list(islice(A184779_gen(),25)) # Chai Wah Wu, Jul 28 2022
Comments
Examples
Links
Crossrefs
Programs
Magma
Mathematica
PARI
Python
Formula