cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A184796 Primes of the form floor(k*sqrt(3)).

Original entry on oeis.org

3, 5, 13, 17, 19, 29, 31, 41, 43, 53, 67, 71, 79, 83, 103, 107, 109, 131, 157, 173, 181, 193, 197, 199, 211, 223, 233, 239, 251, 263, 271, 277, 311, 313, 337, 349, 353, 367, 379, 389, 401, 419, 431, 433, 439, 443, 457, 467, 479, 491, 509, 521, 523, 547, 557, 569, 571, 587, 599, 601, 607, 613, 647, 659, 661, 673, 677, 691, 701, 727, 739, 743, 751, 769, 827, 829, 853, 857, 859, 881, 883, 907, 911, 919, 937, 947, 971, 983, 997, 1009, 1013, 1021, 1039
Offset: 1

Views

Author

Clark Kimberling, Jan 22 2011

Keywords

Comments

See A184774.
Equals the prime terms of A022838. - Bill McEachen, Oct 28 2021

Examples

			The sequence A022838(n)=floor(n*sqrt(3)) begins with 1,3,5,6,8,10,12,13,15,17,19,... which includes the primes A022838(2)=3, A022838(3)=5, A022838(8)=13,...
		

Crossrefs

Programs

  • Mathematica
    r=3^(1/2); s=r/(r-1);
    a[n_]:=Floor [n*r];  (* A022838 *)
    b[n_]:=Floor [n*s];  (* A054406 *)
    Table[a[n],{n,1,120}]
    t1={};Do[If[PrimeQ[a[n]], AppendTo[t1,a[n]]],{n,1,600}];t1
    t2={};Do[If[PrimeQ[a[n]], AppendTo[t2,n]],{n,1,600}];t2
    t3={};Do[If[MemberQ[t1,Prime[n]],AppendTo[t3,n]],{n,1,300}];t3
    t4={};Do[If[PrimeQ[b[n]], AppendTo[t4,b[n]]],{n,1,600}];t4
    t5={};Do[If[PrimeQ[b[n]], AppendTo[t5,n]],{n,1,600}];t5
    t6={};Do[If[MemberQ[t4,Prime[n]],AppendTo[t6,n]],{n,1,300}];t6
    (* The lists t1, t2, t3, t4, t5, t6 match the sequences
    A184796, A184797, A184798, A184799, A184800, A184801. *)