cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A022838 Beatty sequence for sqrt(3); complement of A054406.

Original entry on oeis.org

1, 3, 5, 6, 8, 10, 12, 13, 15, 17, 19, 20, 22, 24, 25, 27, 29, 31, 32, 34, 36, 38, 39, 41, 43, 45, 46, 48, 50, 51, 53, 55, 57, 58, 60, 62, 64, 65, 67, 69, 71, 72, 74, 76, 77, 79, 81, 83, 84, 86, 88, 90, 91, 93, 95, 96, 98, 100, 102, 103, 105, 107, 109, 110, 112
Offset: 1

Views

Author

Keywords

Comments

0 <= A144077(n) - a(n) <= 1. - Reinhard Zumkeller, Sep 09 2008
From Reinhard Zumkeller, Jan 20 2010: (Start)
A080757(n) = a(n+1) - a(n).
A171970(n) = floor(a(n)/2).
A171972(n) = a(A000290(n)). (End)
Numbers k>0 such that A194979(k+1) = A194979(k) + 1. - Clark Kimberling, Dec 02 2014
Powers of 2 (i.e, 1, 8, 32, 64, 128, 256, 512, 4096, 8192,...) appear at n=1, 5, 19, 37, 74, 148, 296, 2365, 4730, 18919, 75675, 151349, 302698, 605396, ... related to A293328. - R. J. Mathar, Jan 17 2025

Crossrefs

Cf. A080757 (first differences), A194106 (partial sums), A194028 (even bisection), A184796 (prime terms).
Cf. A026255, A054406 (complement).

Programs

Formula

a(n) = floor(n*sqrt(3)). - Reinhard Zumkeller, Jan 20 2010
a(n) = 2 * floor(n * (sqrt(3) - 1)) + floor(n * (2 - sqrt(3))) + 1. - Miko Labalan, Dec 03 2016

A184799 Primes of the form floor(k*s), where s=(3+sqrt(3))/2.

Original entry on oeis.org

2, 7, 11, 23, 37, 47, 59, 61, 73, 89, 97, 101, 113, 127, 137, 139, 149, 151, 163, 167, 179, 191, 227, 229, 241, 257, 269, 281, 283, 293, 307, 317, 331, 347, 359, 373, 383, 397, 409, 421, 449, 461, 463, 487, 499, 503, 541, 563, 577, 593, 617, 619, 631, 641, 643, 653, 683, 709, 719, 733, 757, 761
Offset: 1

Views

Author

Clark Kimberling, Jan 22 2011

Keywords

Examples

			See A184796.
		

Crossrefs

Programs

  • Maple
    filter:= proc(p) local v, k;
      v:= p*(1-1/sqrt(3));
      k:= ceil(v);
      is((v-k+1)^2 > 1/3)
    end proc:
    select(filter, [seq(ithprime(i),i=1..200)]); # Robert Israel, May 04 2020
  • Mathematica
    (See A184796.)

A095280 Lower Wythoff primes, i.e., primes in A000201.

Original entry on oeis.org

3, 11, 17, 19, 29, 37, 43, 53, 59, 61, 67, 71, 79, 97, 101, 103, 113, 127, 131, 137, 139, 163, 173, 179, 181, 197, 199, 211, 223, 229, 239, 241, 257, 263, 271, 281, 283, 307, 313, 317, 331, 347, 349, 359, 367, 373, 383, 389, 401, 409, 419, 433
Offset: 1

Views

Author

Antti Karttunen, Jun 04 2004

Keywords

Comments

Contains all primes p whose Zeckendorf-expansion A014417(p) ends with an even number of 0's.
For generalizations and conjectures, see A184774.

Crossrefs

Intersection of A000040 & A000201. Complement of A095281 in A000040. Cf. A095080, A095083, A095084, A095290, A184792, A184793, A184794, A184796.

Programs

  • Maple
    R:= NULL: count:= 0:
    for n from 1 while count < 100 do
      p:= floor(n*phi);
      if isprime(p) then R:= R,p; count:= count+1 fi
    od:
    R; # Robert Israel, Jan 17 2023
  • Mathematica
    (See A184792.)
  • Python
    from math import isqrt
    from itertools import count, islice
    from sympy import isprime
    def A095280_gen(): # generator of terms
        return filter(isprime,((n+isqrt(5*n**2)>>1) for n in count(1)))
    A095280_list = list(islice(A095280_gen(),30)) # Chai Wah Wu, Aug 16 2022

A184797 Numbers k such that floor(k*sqrt(3)) is prime.

Original entry on oeis.org

2, 3, 8, 10, 11, 17, 18, 24, 25, 31, 39, 41, 46, 48, 60, 62, 63, 76, 91, 100, 105, 112, 114, 115, 122, 129, 135, 138, 145, 152, 157, 160, 180, 181, 195, 202, 204, 212, 219, 225, 232, 242, 249, 250, 254, 256, 264, 270, 277, 284, 294, 301, 302, 316, 322, 329, 330, 339, 346, 347, 351, 354, 374, 381, 382, 389, 391, 399, 405, 420, 427, 429, 434, 444, 478, 479, 493, 495, 496, 509, 510, 524, 526, 531, 541, 547, 561, 568, 576, 583, 585, 590, 600
Offset: 1

Views

Author

Clark Kimberling, Jan 22 2011

Keywords

Examples

			See A184796.
		

Crossrefs

Programs

A184801 Numbers m such that prime(m) is of the form floor(ks), where s=(3+sqrt(3))/2; complement of A184778.

Original entry on oeis.org

1, 4, 5, 9, 12, 15, 17, 18, 21, 24, 25, 26, 30, 31, 33, 34, 35, 36, 38, 39, 41, 43, 49, 50, 53, 55, 57, 60, 61, 62, 63, 66, 67, 69, 72, 74, 76, 78, 80, 82, 87, 89, 90, 93, 95, 96, 100, 103, 106, 108, 113, 114, 115, 116, 117, 119, 124, 127, 128, 130, 134, 135, 137, 138, 139, 140, 141, 142, 143, 146, 150, 151, 154, 158, 160, 162, 163, 165, 167, 171, 173, 174, 180, 183, 184, 186, 188, 193, 195, 197, 198, 200, 203, 204, 206, 209, 210, 212, 213, 217, 219, 221
Offset: 1

Views

Author

Clark Kimberling, Jan 22 2011

Keywords

Examples

			See A184796.
		

Crossrefs

Programs

A184800 Numbers k such that floor(k*s) is prime, where s = (3 + sqrt(3))/2.

Original entry on oeis.org

1, 3, 5, 10, 16, 20, 25, 26, 31, 38, 41, 43, 48, 54, 58, 59, 63, 64, 69, 71, 76, 81, 96, 97, 102, 109, 114, 119, 120, 124, 130, 134, 140, 147, 152, 158, 162, 168, 173, 178, 190, 195, 196, 206, 211, 213, 229, 238, 244, 251, 261, 262, 267, 271, 272, 276, 289, 300, 304, 310, 320, 322, 327, 333, 337, 342, 343, 347, 348, 355, 365, 371, 375, 393, 398, 403, 409, 413, 419, 431, 436, 437, 452, 462, 464, 469, 475, 495, 502, 508, 513, 517, 523, 528, 540, 545, 546, 550, 551, 561, 578, 584
Offset: 1

Views

Author

Clark Kimberling, Jan 22 2011

Keywords

Examples

			See A184796.
		

Crossrefs

Programs

A323388 a(n) = b(n+1)/b(n) - 1 where b(1)=3 and b(k) = b(k-1) + lcm(floor(sqrt(3)*k), b(k-1)).

Original entry on oeis.org

1, 5, 1, 1, 5, 1, 13, 5, 17, 19, 1, 11, 1, 5, 1, 29, 31, 1, 17, 1, 19, 13, 41, 43, 1, 23, 1, 1, 17, 53, 1, 19, 29, 1, 31, 1, 13, 67, 23, 71, 1, 37, 1, 1, 79, 1, 83, 1, 43, 1, 1, 13, 31, 1, 1, 1, 1, 1, 103, 1, 107, 109, 1, 1, 1, 29, 1, 1, 1, 61, 1, 1
Offset: 1

Views

Author

Pedja Terzic, Jan 13 2019

Keywords

Comments

Conjectures:
1. This sequence consists only of 1's and primes.
2. Every odd prime of the form floor(sqrt(3)*m) greater than 3 is a term of this sequence.
3. At the first appearance of each prime of the form floor(sqrt(3)*m), it is larger than any prime that has already appeared.
The 2nd and 3rd conjectures are proved at the Mathematics Stack Exchange link. - Sungjin Kim, Jul 17 2019

Crossrefs

Cf. A184796 (primes of the form floor(sqrt(3)*m)).

Programs

  • PARI
    Generator(n)={b1=3; list=[]; for(k=2, n, b2=b1+lcm(floor(sqrt(3)*k), b1); a=b2/b1-1; list=concat(list,a); b1=b2); print(list)}
    
  • PARI
    lista(nn)={my(b1=3, b2, va=vector(nn)); for(k=2, nn+1, b2=b1+lcm(sqrtint(3*k^2), b1); va[k-1]=b2/b1-1; b1=b2); va}; \\ Michel Marcus, Aug 20 2022

A184798 Numbers m such that prime(m) is of the form floor(k*sqrt(3)); complement of A184801.

Original entry on oeis.org

2, 3, 6, 7, 8, 10, 11, 13, 14, 16, 19, 20, 22, 23, 27, 28, 29, 32, 37, 40, 42, 44, 45, 46, 47, 48, 51, 52, 54, 56, 58, 59, 64, 65, 68, 70, 71, 73, 75, 77, 79, 81, 83, 84, 85, 86, 88, 91, 92, 94, 97, 98, 99, 101, 102, 104, 105, 107, 109, 110, 111, 112, 118, 120, 121, 122, 123, 125, 126, 129, 131, 132, 133, 136, 144, 145, 147, 148, 149, 152, 153, 155, 156, 157, 159, 161, 164, 166, 168, 169, 170, 172, 175
Offset: 1

Views

Author

Clark Kimberling, Jan 22 2011

Keywords

Examples

			See A184796.
		

Crossrefs

Programs

Showing 1-8 of 8 results.