A184796 Primes of the form floor(k*sqrt(3)).
3, 5, 13, 17, 19, 29, 31, 41, 43, 53, 67, 71, 79, 83, 103, 107, 109, 131, 157, 173, 181, 193, 197, 199, 211, 223, 233, 239, 251, 263, 271, 277, 311, 313, 337, 349, 353, 367, 379, 389, 401, 419, 431, 433, 439, 443, 457, 467, 479, 491, 509, 521, 523, 547, 557, 569, 571, 587, 599, 601, 607, 613, 647, 659, 661, 673, 677, 691, 701, 727, 739, 743, 751, 769, 827, 829, 853, 857, 859, 881, 883, 907, 911, 919, 937, 947, 971, 983, 997, 1009, 1013, 1021, 1039
Offset: 1
Keywords
Examples
The sequence A022838(n)=floor(n*sqrt(3)) begins with 1,3,5,6,8,10,12,13,15,17,19,... which includes the primes A022838(2)=3, A022838(3)=5, A022838(8)=13,...
Crossrefs
Programs
-
Mathematica
r=3^(1/2); s=r/(r-1); a[n_]:=Floor [n*r]; (* A022838 *) b[n_]:=Floor [n*s]; (* A054406 *) Table[a[n],{n,1,120}] t1={};Do[If[PrimeQ[a[n]], AppendTo[t1,a[n]]],{n,1,600}];t1 t2={};Do[If[PrimeQ[a[n]], AppendTo[t2,n]],{n,1,600}];t2 t3={};Do[If[MemberQ[t1,Prime[n]],AppendTo[t3,n]],{n,1,300}];t3 t4={};Do[If[PrimeQ[b[n]], AppendTo[t4,b[n]]],{n,1,600}];t4 t5={};Do[If[PrimeQ[b[n]], AppendTo[t5,n]],{n,1,600}];t5 t6={};Do[If[MemberQ[t4,Prime[n]],AppendTo[t6,n]],{n,1,300}];t6 (* The lists t1, t2, t3, t4, t5, t6 match the sequences A184796, A184797, A184798, A184799, A184800, A184801. *)
Comments