cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Pedja Terzic

Pedja Terzic's wiki page.

Pedja Terzic has authored 15 sequences. Here are the ten most recent ones:

A323388 a(n) = b(n+1)/b(n) - 1 where b(1)=3 and b(k) = b(k-1) + lcm(floor(sqrt(3)*k), b(k-1)).

Original entry on oeis.org

1, 5, 1, 1, 5, 1, 13, 5, 17, 19, 1, 11, 1, 5, 1, 29, 31, 1, 17, 1, 19, 13, 41, 43, 1, 23, 1, 1, 17, 53, 1, 19, 29, 1, 31, 1, 13, 67, 23, 71, 1, 37, 1, 1, 79, 1, 83, 1, 43, 1, 1, 13, 31, 1, 1, 1, 1, 1, 103, 1, 107, 109, 1, 1, 1, 29, 1, 1, 1, 61, 1, 1
Offset: 1

Author

Pedja Terzic, Jan 13 2019

Keywords

Comments

Conjectures:
1. This sequence consists only of 1's and primes.
2. Every odd prime of the form floor(sqrt(3)*m) greater than 3 is a term of this sequence.
3. At the first appearance of each prime of the form floor(sqrt(3)*m), it is larger than any prime that has already appeared.
The 2nd and 3rd conjectures are proved at the Mathematics Stack Exchange link. - Sungjin Kim, Jul 17 2019

Crossrefs

Cf. A184796 (primes of the form floor(sqrt(3)*m)).

Programs

  • PARI
    Generator(n)={b1=3; list=[]; for(k=2, n, b2=b1+lcm(floor(sqrt(3)*k), b1); a=b2/b1-1; list=concat(list,a); b1=b2); print(list)}
    
  • PARI
    lista(nn)={my(b1=3, b2, va=vector(nn)); for(k=2, nn+1, b2=b1+lcm(sqrtint(3*k^2), b1); va[k-1]=b2/b1-1; b1=b2); va}; \\ Michel Marcus, Aug 20 2022

A323386 a(n) = b(n+1)/b(n) - 1 where b(1)=2 and b(k) = b(k-1) + lcm(floor(sqrt(2)*k),b(k-1)).

Original entry on oeis.org

1, 1, 5, 7, 1, 3, 11, 1, 7, 5, 1, 1, 19, 7, 11, 1, 5, 13, 1, 29, 31, 1, 11, 1, 1, 19, 13, 41, 1, 43, 1, 23, 1, 1, 1, 13, 53, 1, 1, 19, 59, 1, 31, 1, 13, 1, 67, 23, 1, 1, 73, 1, 19, 1, 79, 1, 41, 83, 1, 43, 29, 89, 1, 13, 31, 47, 1, 97, 1, 1, 101, 103
Offset: 1

Author

Pedja Terzic, Jan 13 2019

Keywords

Comments

Conjectures:
1. This sequence consists only of 1's and primes.
2. Every odd prime of the form floor(sqrt(2)*m) is a term of this sequence.
3. At the first appearance of each prime of the form floor(sqrt(2)*m), it is the next prime after the largest prime that has already appeared.

Crossrefs

Programs

  • PARI
    Generator(n)={b1=2; list=[]; for(k=2, n, b2=b1+lcm(floor(sqrt(2)*k), b1); a=b2/b1-1; list=concat(list,a); b1=b2); print(list)}

A323359 a(n) = b(n+1)/b(n) - 1 where b(1)=2 and b(k) = b(k-1) + lcm(floor(sqrt(k^3)), b(k-1)).

Original entry on oeis.org

1, 5, 1, 11, 7, 1, 11, 1, 31, 1, 41, 23, 13, 29, 1, 1, 19, 41, 89, 1, 103, 11, 1, 1, 11, 1, 37, 1, 41, 43, 181, 1, 1, 23, 1, 1, 1, 1, 1, 131, 17, 281, 97, 43, 311, 23, 83, 1, 353, 1, 17, 1, 1, 37, 419, 43, 1, 151, 29, 17, 61, 1, 1, 131, 67, 137, 1, 191, 1, 1, 61, 89
Offset: 1

Author

Pedja Terzic, Jan 12 2019

Keywords

Comments

Conjectures:
1. This sequence consists only of 1's and primes.
2. Every odd prime of the form floor(sqrt(m^3)) is a term of this sequence.
3. At the first appearance of each prime of the form floor(sqrt(m^3)), it is the next prime after the largest prime that has already appeared.
Record values appear to be A291139(m), m > 1. - Bill McEachen, Jun 23 2023

Crossrefs

Programs

  • PARI
    Generator(n)={b1=2;list=[]; for(k=2, n, b2=b1+lcm(sqrtint(k^3),b1); a=b2/b1-1; list=concat(list,a);b1=b2); return(list)}

A304822 a(n) = A304821(n+3)/A304821(n) - 1.

Original entry on oeis.org

1, 1, 2, 5, 1, 7, 1, 3, 5, 11, 1, 13, 7, 5, 1, 17, 1, 19, 5, 7, 11, 23, 1, 5, 13, 3, 1, 29, 5, 31, 1, 11, 17, 1, 1, 37, 19, 13, 1, 41, 1, 43, 11, 5, 23, 47, 1, 7, 1, 17, 13, 53, 1, 1, 1, 19, 29, 59, 1, 61, 31, 1, 1, 13, 11, 67, 17, 23, 1, 71, 1, 73
Offset: 1

Author

Pedja Terzic, May 19 2018

Keywords

Comments

Conjecture: This sequence consists of 1's and primes only.
a(n) divides n+1. - A.H.M. Smeets, Jul 02 2018

Crossrefs

Programs

  • Mathematica
    Drop[#, 3] &@ Fold[Append[#1, {#2, #2/#1 - 1} & @@ {#1[[-3, 1]], #1[[-3, 1]] + LCM[#1[[-3, 1]], #2 + 1]}] &, {{6, 0}, {6, 0}, {6, 0}}, Range@ 72] [[All, -1]] (* Michael De Vlieger, May 20 2018 *)
  • PARI
    Generator(n)={b1=6;b2=6;b3=6;list=[];for(k=4,n,b4=b1+lcm(k-2,b1);a=b4/b1-1;list=concat(list,a);b1=b2;b2=b3;b3=b4);print(list)}
    
  • Python
    from math import gcd
    n,an0,an1,an2 = 3,6,6,6
    while n-3 < 200:
        n += 1
        an0,an1,an2,an3 = an2+an2*(n-2)//gcd(an2,n-2),an0,an1,an2
        # an0 = A304821(n), an3 = A304821(n-3)
        print(n-3,an0//an3-1)
    # A.H.M. Smeets, Jul 02 2018

A304821 For n > 3, a(n) = a(n-3) + lcm(a(n-3), n-2) with a(1)=6, a(2)=6, a(3)=6.

Original entry on oeis.org

6, 6, 6, 12, 12, 18, 72, 24, 144, 144, 96, 864, 1728, 192, 12096, 13824, 1152, 24192, 248832, 2304, 483840, 1492992, 18432, 5806080, 35831808, 36864, 34836480, 501645312, 147456, 69672960, 15049359360, 884736
Offset: 1

Author

Pedja Terzic, May 19 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Fold[Append[#1, #1[[-3]] + LCM[#1[[-3]], #2 + 1]] &, {6, 6, 6}, Range@ 29] (* Michael De Vlieger, May 20 2018 *)
  • PARI
    Recurrence(n)={b1=6;b2=6;b3=6;list=[6,6,6];for(k=4,n,b4=b1+lcm(k-2,b1);list=concat(list,b4);b1=b2;b2=b3;b3=b4);print(list)}

A304177 Union of sequences b and c defined by: b(1)=8, b(2)=488, b(n)=62*b(n-1) - b(n-2) and c(1)=22, c(2)=10582, c(n)=482*c(n-1) - c(n-2).

Original entry on oeis.org

8, 22, 488, 10582, 30248, 1874888, 5100502, 116212808, 2458431382, 7203319208, 446489578088, 1184958825622, 27675150522248, 571147695518422, 1715412842801288, 106327921103157608, 275292004281053782, 6590615695552970408, 132690174915772404502, 408511845203181007688
Offset: 1

Author

Pedja Terzic, May 07 2018

Keywords

Comments

Conjecture: Each member of this sequence can be used as an initial value for Inkeri's primality test for Fermat numbers.
Inkeri's primality test for Fermat numbers: Fermat's number F_{m}=2^2^m+1 (m => 2) is prime if and only if F_{m} divides the term v_{2^m-2} of the series v_{0}=8 , v_{i}=(v_{i-1})^2-2 .

References

  • K. Inkeri, Tests for primality, Ann. Acad. Sci. Fenn., A I 279, 119 (1960).

Crossrefs

Programs

  • Mathematica
    b=RecurrenceTable[{a[1]==8,a[2]==488,a[n]==62a[n-1]-a[n-2]},a,{n,12}]; c= RecurrenceTable[{a[1]==22,a[2]==10582,a[n]==482a[n-1]-a[n-2]},a,{n,12}]; Join[ b,c]//Union (* Harvey P. Dale, May 05 2022 *)
  • PARI
    InitialValues(n)= {l=[8,22,488,10582];b1=8;b2=488;i=3;while(i<=n,b=62*b2-b1;l=concat(l,b);b1=b2;b2=b;i++);c1=22;c2=10582;j=3;while(j<=n,c=482*c2-c1;l=concat(l,c);c1=c2;c2=c;j++);print(vecsort(l))}

A218457 a(n) = 6*n^3 - 263*n^2 + 3469*n - 12841.

Original entry on oeis.org

-12841, -9629, -6907, -4639, -2789, -1321, -199, 613, 1151, 1451, 1549, 1481, 1283, 991, 641, 269, -89, -397, -619, -719, -661, -409, 73, 821, 1871, 3259, 5021, 7193, 9811, 12911, 16529, 20701, 25463, 30851, 36901, 43649, 51131, 59383, 68441, 78341, 89119
Offset: 0

Author

Pedja Terzic, Oct 29 2012

Keywords

Comments

A prime-producing cubic polynomial. Produces 78 distinct primes if we scan the absolute values of the first 100 terms.

Crossrefs

Programs

  • Mathematica
    Table[6n^3-263n^2+3469n-12841,{n,0,99}]
  • PARI
    a(n) = {6*n^3 - 263*n^2 + 3469*n - 12841} \\ Andrew Howroyd, Apr 27 2020

Extensions

Signs of terms corrected and a(32) and beyond from Andrew Howroyd, Apr 27 2020

A218458 a(n) = 2*n^3 - 163*n^2 + 2777*n - 11927.

Original entry on oeis.org

-11927, -9311, -7009, -5009, -3299, -1867, -701, 211, 881, 1321, 1543, 1559, 1381, 1021, 491, -197, -1031, -1999, -3089, -4289, -5587, -6971, -8429, -9949, -11519, -13127, -14761, -16409, -18059, -19699, -21317, -22901, -24439, -25919
Offset: 0

Author

Pedja Terzic, Oct 29 2012

Keywords

Comments

A prime-producing cubic polynomial. Produces 78 distinct primes if we scan the absolute values of the first 100 terms.

Crossrefs

Programs

  • Magma
    [2*n^3 - 163*n^2 + 2777*n - 11927 : n in [0..60]]; // Wesley Ivan Hurt, Apr 21 2021
  • Mathematica
    Table[2n^3-163n^2+2777n-11927,{n,0,99}]
    LinearRecurrence[{4,-6,4,-1},{-11927,-9311,-7009,-5009},40] (* Harvey P. Dale, Jan 31 2017 *)
  • Maxima
    A218458(n):=2*n^3-163*n^2+2777*n-11927$
    makelist(A218458(n),n,0,30); /* Martin Ettl, Nov 08 2012 */
    

Formula

G.f.: (-11927+38397*x-41327*x^2+14869*x^3)/(x-1)^4. - R. J. Mathar, Nov 07 2012
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Wesley Ivan Hurt, Apr 21 2021

A218456 2*n^3 - 313*n^2 + 6823*n - 13633.

Original entry on oeis.org

-13633, -7121, -1223, 4073, 8779, 12907, 16469, 19477, 21943, 23879, 25297, 26209, 26627, 26563, 26029, 25037, 23599, 21727, 19433, 16729, 13627, 10139, 6277, 2053, -2521, -7433, -12671, -18223, -24077, -30221, -36643, -43331, -50273, -57457
Offset: 0

Author

Pedja Terzic, Oct 29 2012

Keywords

Comments

A prime-producing cubic polynomial. Produces 79 distinct primes if we scan the absolute values of the first 100 terms..

Crossrefs

Programs

  • Mathematica
    Table[2n^3-313n^2+6823n-13633,{n,0,99}]
    LinearRecurrence[{4,-6,4,-1},{-13633,-7121,-1223,4073},40] (* Harvey P. Dale, May 03 2018 *)
  • Maxima
    A218456(n):=2*n^3-313*n^2+6823*n-13633$
    makelist(A218456(n),n,0,30); /* Martin Ettl, Nov 08 2012 */

Formula

G.f.: (20771*x^3-54537*x^2+47411*x-13633)/(x-1)^4. [Colin Barker, Nov 10 2012]

A217606 a(n) is the least unused prime greater than 3 such that (a(n) + a(n-1))/2 is prime, with a(0)=13.

Original entry on oeis.org

13, 61, 73, 181, 37, 97, 109, 193, 229, 157, 241, 313, 349, 277, 337, 397, 421, 373, 541, 433, 409, 457, 757, 661, 577, 709, 613, 601, 853, 769, 733, 1021, 997, 877, 829, 673, 1033, 1009, 1069, 1117, 1129, 937, 1201, 1297, 1549, 1093, 1153, 1249, 1213, 1381
Offset: 0

Author

Pedja Terzic, Oct 08 2012

Keywords

Comments

Conjecture: every prime of the form 12k+1 is a member.

Crossrefs

Cf. A086519.

Programs

  • Maple
    a:=5:
    l:=13:
    L:=[l]:
    while l < 3400 do
    if isprime((l+a)/2) then
    if not(a in L) then
    if not a mod 12 = 1 then
    print(a);
    break;
    end if;
    L:=[op(L),a]:
    l:=a:
    a:=5:
    else
    a:=nextprime(a):
    end if;
    else
    a:=nextprime(a):
    end if;
    end do;
    L;