A184824 a(n) = n + floor(n*t) + floor(n/t) + floor(n/t^2), where t is the tetranacci constant.
2, 6, 9, 14, 17, 21, 24, 29, 32, 36, 39, 44, 47, 50, 54, 58, 61, 65, 69, 73, 76, 80, 84, 88, 91, 95, 100, 102, 106, 110, 114, 117, 121, 125, 129, 132, 136, 140, 144, 147, 152, 154, 158, 161, 166, 169, 173, 176, 181, 184, 188, 191, 196, 200, 203, 207, 210, 214, 217, 222, 225, 229, 232, 237, 240, 244, 248, 252, 255, 258, 262, 266, 269, 273, 277, 281, 284, 288, 292, 296, 300, 304, 307, 310, 314, 318, 322, 325, 329, 333, 337, 340, 345, 348, 352, 355, 359, 362, 366, 369, 374, 377, 381, 384, 389, 392, 396, 401, 404, 408
Offset: 1
Keywords
Examples
Let t be the tetranacci constant, then t^2 = 1 + t + 1/t + 1/t^2 and: t = 1.92756197548..., t^2 = 3.71549516932..., t^3 = 7.16184720848..., t^4 = 13.8049043532...
Programs
-
PARI
{a(n)=local(t=real(polroots(1+x+x^2+x^3-x^4)[2])); n+floor(n*t)+floor(n/t)+floor(n/t^2)}
Formula
Limit a(n)/n = t^2 = 3.7154951693276375317543272...
a(n) = n + floor(n*p/r) + floor(n*q/r) + floor(n*s/r), where p=t, q=t^2, r=t^3, s=t^4, and t is the tetranacci constant.
Comments