A184826 a(n) = n + floor(n*t) + floor(n*t^2) + floor(n*t^3) where t is the tetranacci constant.
12, 26, 40, 53, 67, 81, 96, 109, 123, 137, 150, 164, 179, 192, 205, 219, 233, 246, 261, 275, 289, 302, 316, 330, 344, 358, 372, 385, 398, 412, 427, 440, 454, 468, 482, 495, 509, 524, 537, 551, 565, 578, 591, 606, 620, 633, 647, 661, 675, 689, 703, 717, 730, 744, 758, 772, 785, 799, 813, 826, 840, 855, 869, 882, 896, 910, 923, 938, 952, 965, 978, 992, 1006, 1019, 1034, 1048, 1062, 1075, 1089, 1103, 1117, 1131, 1144, 1158, 1171, 1185, 1200, 1213, 1227, 1241, 1255, 1268, 1283, 1297, 1310, 1324, 1337, 1351
Offset: 1
Keywords
Examples
Let t be the tetranacci constant, then t^4 = 1 + t + t^2 + t^3 and: t = 1.92756197548..., t^2 = 3.71549516932..., t^3 = 7.16184720848..., t^4 = 13.8049043532...
Programs
-
Mathematica
Module[{t=x/.FindRoot[x^4-x^3-x^2-x-1==0,{x,2},WorkingPrecision->200], t2,t3},t2=t^2;t3=t^3;Table[n+Floor[t*n]+Floor[t2*n]+Floor[t3*n], {n,100}]] (* Harvey P. Dale, Oct 18 2012 *)
-
PARI
{a(n)=local(t=real(polroots(1+x+x^2+x^3-x^4)[2])); n+floor(n*t)+floor(n*t^2)+floor(n*t^3)}
Formula
Limit a(n)/n = t^4 = 13.804904353297009893939920...
a(n) = n + floor(n*q/p) + floor(n*r/p) + floor(n*s/p), where p=t, q=t^2, r=t^3, s=t^4, and t is the tetranacci constant.
Comments