cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A184837 a(n) = n + floor(n*t) + floor(n*t^2) + floor(n/t) + floor(n/t^2), where t is the pentanacci constant.

Original entry on oeis.org

5, 13, 20, 29, 36, 44, 51, 59, 66, 74, 81, 90, 97, 105, 111, 120, 127, 135, 142, 151, 158, 166, 172, 181, 188, 196, 203, 212, 219, 225, 233, 241, 248, 256, 264, 272, 279, 286, 294, 302, 309, 317, 325, 333, 339, 347, 355, 363, 370, 378, 386, 393, 400, 408, 416, 424, 431, 440, 447, 453, 461, 469, 477, 484, 492, 500, 507, 514, 522, 530, 538, 545, 553, 561, 568, 575, 583, 591, 599, 606, 614, 621, 629, 636, 644, 652, 660, 667, 674, 681, 689, 696, 705, 712, 720, 727, 735, 742, 750, 757, 766, 773, 781, 787, 796, 803
Offset: 1

Views

Author

Paul D. Hanna, Jan 23 2011

Keywords

Comments

This is one of five sequences that partition the positive integers.
Given t is the pentanacci constant, then the following sequences are disjoint:
. A184835(n) = n + [n/t] + [n/t^2] + [n/t^3] + [n/t^4],
. A184836(n) = n + [n*t] + [n/t] + [n/t^2] + [n/t^3],
. A184837(n) = n + [n*t] + [n*t^2] + [n/t] + [n/t^2],
. A184838(n) = n + [n*t] + [n*t^2] + [n*t^3] + [n/t],
. A184839(n) = n + [n*t] + [n*t^2] + [n*t^3] + [n*t^4], where []=floor.
This is a special case of Clark Kimberling's results given in A184812.

Examples

			Given t = pentanacci constant, then t^3 = 1 + t + t^2 + 1/t + 1/t^2,
t = 1.965948236645..., t^2 = 3.864952469169..., t^3 = 7.598296491482..., t^4 = 14.93785758893..., t^5 = 29.36705478623...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(t=real(polroots(1+x+x^2+x^3+x^4-x^5)[1])); n+floor(n*t)+floor(n*t^2)+floor(n/t)+floor(n/t^2)}

Formula

Limit a(n)/n = t^3 = 7.5982964914823797216620775...
a(n) = n + floor(n*p/r) + floor(n*q/r) + floor(n*s/r) + floor(n*u/r), where p=t, q=t^2, r=t^3, s=t^4, u=t^5, and t is the pentanacci constant.