A184835 a(n) = n + floor(n/t) + floor(n/t^2) + floor(n/t^3) + floor(n/t^4), where t is the pentanacci constant.
1, 3, 4, 7, 8, 10, 11, 15, 16, 18, 19, 22, 23, 25, 27, 31, 32, 34, 35, 38, 39, 41, 43, 46, 47, 49, 50, 53, 54, 57, 60, 62, 63, 65, 67, 69, 70, 73, 75, 77, 78, 80, 82, 84, 86, 89, 91, 93, 94, 96, 98, 100, 101, 104, 106, 108, 109, 112, 114, 116, 119, 121, 123, 124, 126, 128, 130, 131, 134, 136, 138, 139, 141, 143, 146, 148, 150, 152, 154, 155, 157, 159, 161, 163, 165, 167, 169, 170, 173, 175, 177, 179, 182, 183, 185, 186, 189, 190, 193, 194, 197, 198, 200, 201, 205, 206, 209, 210, 213, 214, 216, 217, 220, 222, 224, 227, 228
Offset: 1
Keywords
Examples
Given t = pentanacci constant, then t = 1 + 1/t + 1/t^2 + 1/t^3 + 1/t^4, t = 1.965948236645..., t^2 = 3.864952469169..., t^3 = 7.598296491482..., t^4 = 14.93785758893..., t^5 = 29.36705478623...
Programs
-
Mathematica
With[{pc=x/.FindRoot[x^5-x^4-x^3-x^2-x-1==0,{x,1.96},WorkingPrecision-> 100]}, Table[n+Total[Table[Floor[n/pc^i],{i,4}]],{n,150}]] (* Harvey P. Dale, Jun 21 2011 *)
-
PARI
{a(n)=local(t=real(polroots(1+x+x^2+x^3+x^4-x^5)[1])); n+floor(n/t)+floor(n/t^2)+floor(n/t^3)+floor(n/t^4)}
Formula
Limit a(n)/n = t = 1.9659482366454853371899373...
a(n) = n + floor(n*p/u) + floor(n*q/u) + floor(n*r/u) + floor(n*s/u), where p=t, q=t^2, r=t^3, s=t^4, u=t^5, and t is the pentanacci constant.
Comments