A184839 a(n) = n + floor(n*t) + floor(n*t^2) + floor(n*t^3) + floor(n*t^4), where t is the pentanacci constant.
26, 56, 85, 115, 144, 174, 204, 232, 262, 291, 321, 351, 380, 410, 438, 468, 497, 526, 556, 585, 615, 645, 673, 703, 732, 762, 792, 821, 851, 878, 908, 938, 966, 996, 1025, 1055, 1085, 1113, 1143, 1172, 1202, 1232, 1261, 1291, 1319, 1349, 1379, 1408, 1437, 1466, 1496, 1525, 1554, 1584, 1613, 1643, 1673, 1702, 1731, 1759, 1789, 1819, 1848, 1878, 1906, 1936, 1965, 1994, 2024, 2053, 2083, 2113, 2142, 2172, 2200, 2230, 2260, 2289, 2319, 2348, 2377, 2406, 2435, 2465, 2494, 2524, 2554, 2583, 2611, 2640, 2670
Offset: 1
Keywords
Examples
Given t = pentanacci constant, then t^5 = 1 + t + t^2 + t^3 + t^4, t = 1.965948236645..., t^2 = 3.864952469169..., t^3 = 7.598296491482..., t^4 = 14.93785758893..., t^5 = 29.36705478623...
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
With[{t=Root[x^5-x^4-x^3-x^2-x-1,1]},Table[n+Total@@Through[ Floor[ n*t^Range[4]]],{n,100}]] (* Harvey P. Dale, Dec 12 2019 *)
-
PARI
{a(n)=local(t=real(polroots(1+x+x^2+x^3+x^4-x^5)[1])); n+floor(n*t)+floor(n*t^2)+floor(n*t^3)+floor(n*t^4)}
Formula
Limit a(n)/n = t^5 = 29.367054786236720687050865...
a(n) = n + floor(n*q/p) + floor(n*r/p) + floor(n*s/p) + floor(n*u/p), where p=t, q=t^2, r=t^3, s=t^4, u=t^5, and t is the pentanacci constant.
Comments