A184868 Primes of the form floor((k-1/2)*(2+sqrt(2))+1/2); i.e., primes in A063957.
2, 5, 19, 29, 43, 53, 67, 73, 97, 101, 131, 149, 179, 193, 227, 241, 251, 271, 347, 353, 367, 401, 439, 449, 463, 487, 521, 541, 599, 613, 647, 661, 691, 719, 739, 743, 773, 787, 797, 811, 821, 859, 883, 937, 941, 947, 971, 1009, 1019, 1033, 1087, 1091, 1163, 1193, 1217, 1231, 1279, 1289, 1303, 1361, 1367, 1381, 1429, 1439, 1453, 1483, 1487, 1511, 1531, 1559, 1579, 1613, 1627, 1637, 1699, 1709, 1733, 1753, 1777, 1787, 1801, 1811, 1873, 1907, 1931, 1951, 1979, 1999
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
a[n_]:=Floor [(n-1/2)*(2+2^(1/2))+1/2]; Table[a[n],{n,1,120}] (* A063957 *) t1={}; Do[If[PrimeQ[a[n]], AppendTo[t1,a[n]]],{n,1,600}];t1 t2={}; Do[If[PrimeQ[a[n]], AppendTo[t2,n]],{n,1,600}];t2 t3={}; Do[If[MemberQ[t1,Prime[n]],AppendTo[t3,n]],{n,1,400}];t3 (* Lists t1, t2, t3 match A184868, A184869, A184870. *)
-
PARI
lista(nn) = for (k=1, nn, if (isprime(p=floor((k-1/2)*(2+sqrt(2))+1/2)), print1(p, ", "))); \\ Michel Marcus, Jan 30 2018
Comments