cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A184881 a(n) = A184879(2*n, n) - A184879(2*n, n+1) where A184879(n, k) = Hypergeometric2F1(-2*k, 2*k-2*n, 1, -1) if 0<=k<=n.

Original entry on oeis.org

1, -3, 2, -3, 6, -14, 36, -99, 286, -858, 2652, -8398, 27132, -89148, 297160, -1002915, 3421710, -11785890, 40940460, -143291610, 504932340, -1790214660, 6382504440, -22870640910, 82334307276, -297670187844, 1080432533656, -3935861372604, 14386251913656
Offset: 0

Views

Author

Paul Barry, Jan 24 2011

Keywords

Comments

Hankel transform is A184882.
Signed version of A007054. - Philippe Deléham, Mar 19 2014

Examples

			a(0) = 1;
a(1) = 1 - 4*1 = -3;
a(2) = 4*1 - 2 = 2;
a(3) = 5 - 4*2 = -3;
a(4) = 4*5 - 14 = 6;
a(5) = 42 - 4*14 = -14;
a(6) = 4*42 - 132 = 36;
a(7) = 429 - 4*132 = -99;
a(8) = 4*429 - 1430 = 286, etc; with A000108 = 1,1,2,5,14,42,132,429,1430, ... - _Philippe Deléham_, Mar 19 2014
G.f. = 1 - 3*x + 2*x^2 - 3*x^3 + 6*x^4 - 14*x^5 + 36*x^6 - 99*x^7 + ... - _Michael Somos_, Mar 13 2023
		

Crossrefs

Programs

  • Maple
    A184879 := proc(n,k) if k<0 or k >n then 0; else hypergeom([-2*k,2*k-2*n],[1],-1) ; simplify(%) ; end if; end proc:
    A184881 := proc(n) A184879(2*n,n)-A184879(2*n,n+1) ; end proc:
    seq(A184881(n),n=0..40) ; # R. J. Mathar, Feb 05 2011
  • Mathematica
    h[n_, k_] := HypergeometricPFQ[{-2k, 2k - 2n}, {1}, -1];
    a[0] = 1; a[n_] := h[2n, n] - h[2n, n + 1];
    Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Nov 24 2017 *)

Formula

a(n) = 0^n + Sum_{k=0..2n} (C(2n,k)^2-C(2n+2,k)*C(2n-2,k))*(-1)^k.
G.f.: (8*x+1-sqrt(1+4*x)^3)/(2*x). - Philippe Deléham, Mar 19 2014
a(0) = 1, a(n) = (-1)^n*A007054(n-1) for n>0. - Philippe Deléham, Mar 19 2014
(n+1)*a(n) +2*(2*n-3)*a(n-1)=0. - R. J. Mathar, Nov 19 2014
a(n) = (-1)^n*A002421(n+1)/2 and 0 = a(n)*(+16*a(n+1) + 14*a(n+2)) + a(n+1)*(-6*a(n+1) + a(n+2)) for all n>0. - Michael Somos, Mar 13 2023

A184880 Diagonal sums of number triangle A184879.

Original entry on oeis.org

1, 1, 2, -1, 1, 4, 21, 33, 30, 19, 33, 240, 537, 961, 922, 1223, 2753, 8380, 17725, 27873, 37494, 57627, 132577, 300648, 589953, 942465, 1460146, 2566159, 5351297, 11014388, 20304613, 34080673, 57005646, 105116835, 207381921, 402618208, 728728425, 1262355777, 2218248522, 4121995735, 7892039233
Offset: 0

Views

Author

Paul Barry, Jan 24 2011

Keywords

Crossrefs

Cf. A184879.

Programs

  • Mathematica
    CoefficientList[Series[(1-x-x^2)/(1-2x-x^2+6x^3-7x^4-8x^5+16x^6),{x,0,50}], x] (* or *) LinearRecurrence[{2,1,-6,7,8,-16},{1,1,2,-1,1,4},50] (* Harvey P. Dale, Sep 11 2011 *)

Formula

G.f.: ( 1-x-x^2 ) / ( (4*x^3+3*x^2-x-1)*(4*x^3-5*x^2+3*x-1) )
a(n) = 2*a(n-1)+a(n-2)- 6*a(n-3)+7*a(n-4)+8*a(n-5)-16*a(n-6). [Harvey P. Dale, Sep 11 2011]
Showing 1-2 of 2 results.