cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A296320 T(n,k)=Number of nXk 0..1 arrays with each 1 horizontally, vertically or antidiagonally adjacent to 1 neighboring 1.

Original entry on oeis.org

1, 2, 2, 3, 6, 3, 4, 11, 11, 4, 6, 27, 32, 27, 6, 9, 60, 96, 96, 60, 9, 13, 132, 295, 434, 295, 132, 13, 19, 301, 902, 1970, 1970, 902, 301, 19, 28, 669, 2747, 8470, 12547, 8470, 2747, 669, 28, 41, 1502, 8380, 37431, 77426, 77426, 37431, 8380, 1502, 41, 60, 3370, 25577
Offset: 1

Views

Author

R. H. Hardin, Dec 10 2017

Keywords

Comments

Table starts
..1....2.....3......4........6.........9..........13...........19............28
..2....6....11.....27.......60.......132.........301..........669..........1502
..3...11....32.....96......295.......902........2747.........8380.........25577
..4...27....96....434.....1970......8470.......37431.......164807........723019
..6...60...295...1970....12547.....77426......490668......3078638......19343899
..9..132...902...8470....77426....676269.....6069953.....54182821.....482859661
.13..301..2747..37431...490668...6069953....78105580....994666167...12644605701
.19..669..8380.164807..3078638..54182821...994666167..18043360170..326902733082
.28.1502.25577.723019.19343899.482859661.12644605701.326902733082.8435284786616

Examples

			Some solutions for n=5 k=4
..0..0..0..0. .1..0..0..0. .0..0..0..0. .0..0..1..0. .0..0..0..0
..0..0..0..0. .1..0..0..0. .0..0..0..0. .0..0..1..0. .1..1..0..0
..1..0..0..0. .0..1..1..0. .0..0..1..0. .0..0..0..0. .0..0..1..0
..1..0..0..1. .0..0..0..1. .0..1..0..0. .0..1..0..1. .0..1..0..0
..0..0..0..1. .1..1..0..1. .0..0..0..0. .0..1..0..1. .0..0..1..1
		

Crossrefs

Column 1 is A000930(n+1).
Column 2 is A184884(n+1).

Formula

Empirical for column k:
k=1: a(n) = a(n-1) +a(n-3)
k=2: a(n) = a(n-1) +2*a(n-2) +2*a(n-3) -a(n-4) +a(n-5)
k=3: a(n) = a(n-1) +4*a(n-2) +6*a(n-3) +3*a(n-4) -3*a(n-6) +a(n-7) -3*a(n-9) +a(n-11)
k=4: [order 21]
k=5: [order 43]
k=6: [order 85]

A184883 Number triangle T(n,k) = [k<=n]*Hypergeometric2F1([-k, 2k-2n], [1], 2).

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 9, 13, 1, 1, 13, 41, 25, 1, 1, 17, 85, 129, 41, 1, 1, 21, 145, 377, 321, 61, 1, 1, 25, 221, 833, 1289, 681, 85, 1, 1, 29, 313, 1561, 3649, 3653, 1289, 113, 1, 1, 33, 421, 2625, 8361, 13073, 8989, 2241, 145, 1, 1, 37, 545, 4089, 16641, 36365, 40081, 19825, 3649, 181, 1
Offset: 0

Views

Author

Paul Barry, Jan 24 2011

Keywords

Examples

			Triangle begins
  1;
  1,  1;
  1,  5,   1;
  1,  9,  13,    1;
  1, 13,  41,   25,     1;
  1, 17,  85,  129,    41,     1;
  1, 21, 145,  377,   321,    61,     1;
  1, 25, 221,  833,  1289,   681,    85,     1;
  1, 29, 313, 1561,  3649,  3653,  1289,   113,    1;
  1, 33, 421, 2625,  8361, 13073,  8989,  2241,  145,   1;
  1, 37, 545, 4089, 16641, 36365, 40081, 19825, 3649, 181, 1;
		

Crossrefs

Cf. A099463 (row sums), A114123, A184884 (diagonal sums).

Programs

  • Magma
    T:= func< n,k | (&+[Binomial(k,j)*Binomial(2*(n-k), j)*2^j: j in [0..k]]) >;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 19 2021
    
  • Mathematica
    A184883[n_, k_]:= Hypergeometric2F1[-k, 2*(k-n), 1, 2];
    Table[A184883[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 19 2021 *)
  • Sage
    def A184883(n,k): return simplify( hypergeometric([-k, 2*(k-n)], [1], 2) )
    flatten([[A184883(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Nov 19 2021

Formula

T(n,k) = [k<=n]*Sum_{j=0..k} C(2*n-2*k,j)*C(k,j)*2^j.
T(n, n-k) = A114123(n, k).
Sum_{k=0..n} T(n, k) = A099463(n+1).
Sum_{k=0..floor(n/2)} T(n, k) = A184884(n).
T(n, k) = Hypergeometric2F1([-k, 2*(k-n)], [1], 2). - G. C. Greubel, Nov 19 2021
Showing 1-2 of 2 results.