A184884 Diagonal sums of number triangle A184883.
1, 1, 2, 6, 11, 27, 60, 132, 301, 669, 1502, 3370, 7543, 16919, 37912, 84968, 190457, 426841, 956698, 2144238, 4805827, 10771315, 24141588, 54108332, 121272549, 271806901, 609198390, 1365390546, 3060236911, 6858880431, 15372743856, 34454786384, 77223188593, 173079605553, 387921692082, 869445237846
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,2,2,-1,1).
Crossrefs
Cf. A183883.
Programs
-
Magma
A184883:= func< n,k | (&+[Binomial(k,j)*Binomial(2*(n-k), j)*2^j: j in [0..k]]) >; A184884:= func< n | (&+[A184883(n, j): j in [0..Floor(n/2)]]) >; [A184884(n): n in [0..40]]; // G. C. Greubel, Nov 19 2021
-
Mathematica
LinearRecurrence[{1,2,2,-1,1}, {1,1,2,6,11}, 45] (* G. C. Greubel, Nov 19 2021 *)
-
Sage
def A184883(n,k): return simplify( hypergeometric([-k, 2*(k-n)], [1], 2) ) def A184884(n): return sum( A184883(n, j) for j in (0..n//2) ) [A184884(n) for n in (0..40)] # G. C. Greubel, Nov 19 2021
Formula
G.f.: (1-x^2)/(1-x-2*x^2-2*x^3+x^4-x^5).
a(n) = Sum_{k=0..floor(n/2)} Sum_{j=0..k} C(2*n-4*k,j)*C(k,j)*2^j.
a(n) = Sum_{k=0..floor(n/2)} Hypergeometric2F1([-k, 2*(k-n)], [1], 2). - G. C. Greubel, Nov 19 2021
Comments