cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A184884 Diagonal sums of number triangle A184883.

Original entry on oeis.org

1, 1, 2, 6, 11, 27, 60, 132, 301, 669, 1502, 3370, 7543, 16919, 37912, 84968, 190457, 426841, 956698, 2144238, 4805827, 10771315, 24141588, 54108332, 121272549, 271806901, 609198390, 1365390546, 3060236911, 6858880431, 15372743856, 34454786384, 77223188593, 173079605553, 387921692082, 869445237846
Offset: 0

Views

Author

Paul Barry, Jan 24 2011

Keywords

Crossrefs

Cf. A183883.

Programs

  • Magma
    A184883:= func< n,k | (&+[Binomial(k,j)*Binomial(2*(n-k), j)*2^j: j in [0..k]]) >;
    A184884:= func< n | (&+[A184883(n, j): j in [0..Floor(n/2)]]) >;
    [A184884(n): n in [0..40]]; // G. C. Greubel, Nov 19 2021
    
  • Mathematica
    LinearRecurrence[{1,2,2,-1,1}, {1,1,2,6,11}, 45] (* G. C. Greubel, Nov 19 2021 *)
  • Sage
    def A184883(n,k): return simplify( hypergeometric([-k, 2*(k-n)], [1], 2) )
    def A184884(n): return sum( A184883(n, j) for j in (0..n//2) )
    [A184884(n) for n in (0..40)] # G. C. Greubel, Nov 19 2021

Formula

G.f.: (1-x^2)/(1-x-2*x^2-2*x^3+x^4-x^5).
a(n) = Sum_{k=0..floor(n/2)} Sum_{j=0..k} C(2*n-4*k,j)*C(k,j)*2^j.
a(n) = Sum_{k=0..floor(n/2)} Hypergeometric2F1([-k, 2*(k-n)], [1], 2). - G. C. Greubel, Nov 19 2021

A099463 Bisection of tribonacci numbers.

Original entry on oeis.org

0, 1, 2, 7, 24, 81, 274, 927, 3136, 10609, 35890, 121415, 410744, 1389537, 4700770, 15902591, 53798080, 181997601, 615693474, 2082876103, 7046319384, 23837527729, 80641778674, 272809183135, 922906855808, 3122171529233
Offset: 0

Views

Author

Paul Barry, Oct 16 2004

Keywords

Comments

Binomial transform of A099462.
From Paul Barry, Feb 07 2006: (Start)
a(n+1) gives row sums of number triangle A114123 or A184883.
Partial sums are A113300. (End)

Crossrefs

Programs

  • Magma
    [n le 3 select (n-1) else 3*Self(n-1) +Self(n-2) +Self(n-3): n in [1..31]]; // G. C. Greubel, Nov 20 2021
    
  • Mathematica
    LinearRecurrence[{3,1,1},{0,1,2},30] (* or *) Join[{0},Mean/@ Partition[ LinearRecurrence[ {1,1,1},{1,1,1},60],2]] (* Harvey P. Dale, Apr 02 2012 *)
  • Sage
    def A184883(n, k): return simplify( hypergeometric([-k, 2*(k-n)], [1], 2) )
    def A099463(n): return sum( A184883(n, k) for k in (0..n) )
    [0]+[A099463(n-1) for n in (1..40)] # G. C. Greubel, Nov 20 2021

Formula

G.f.: x*(1-x)/(1-3*x-x^2-x^3).
a(n) = Sum_{k=0..n} binomial(n, k)*Sum_{j=0..floor((k-1)/2)} binomial(j, k-2*j-1)*4^j.
From Paul Barry, Feb 07 2006: (Start)
a(n) = 3*a(n-1) + a(n-2) + a(n-3).
a(n) = Sum_{k=0..n} Sum_{j=0..n} C(2*k, n-k-j)*C(n-k, j)*2^(n-k-j). (End)
a(n)/a(n-1) tends to 3.38297576..., the square of the tribonacci constant A058265. - Gary W. Adamson, Feb 28 2006
If p[1]=2, p[2]=3, p[i]=4, (i>2), and if A is Hessenberg matrix of order n defined by: A[i,j] = p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n+1) = det A. - Milan Janjic, May 02 2010

A114123 Riordan array (1/(1-x), x*(1+x)^2/(1-x)^2).

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 13, 9, 1, 1, 25, 41, 13, 1, 1, 41, 129, 85, 17, 1, 1, 61, 321, 377, 145, 21, 1, 1, 85, 681, 1289, 833, 221, 25, 1, 1, 113, 1289, 3653, 3649, 1561, 313, 29, 1, 1, 145, 2241, 8989, 13073, 8361, 2625, 421, 33, 1, 1, 181, 3649, 19825, 40081, 36365, 16641, 4089, 545, 37, 1
Offset: 0

Views

Author

Paul Barry, Feb 07 2006, Oct 22 2006

Keywords

Comments

Row sums are A099463(n+1). Diagonal sums are A116404.
Triangle formed of even-numbered columns of the Delannoy triangle A008288. - Philippe Deléham, Mar 11 2013

Examples

			Triangle begins
  1;
  1,  1;
  1,  5,   1;
  1, 13,   9,   1;
  1, 25,  41,  13,   1;
  1, 41, 129,  85,  17,  1;
  1, 61, 321, 377, 145, 21, 1;
		

Crossrefs

Cf. A008288, A099463 (row sums), A116404 (diagonal sums), A184883.

Programs

  • Magma
    T:= func< n, k | (&+[Binomial(2*k, j)*Binomial(n-k, j)*2^j: j in [0..n-k]]) >;
    [T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 20 2021
    
  • Maple
    T := (n,k) -> hypergeom([-2*k, k-n], [1], 2);
    seq(seq(round(evalf(T(n,k),99)),k=0..n),n=0..9); # Peter Luschny, Sep 16 2014
  • Mathematica
    T[n_, k_] := Hypergeometric2F1[-2k, k-n, 1, 2];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] (* Jean-François Alcover, Jun 13 2019 *)
  • Sage
    def A114123(n,k): return round( hypergeometric([-2*k, k-n], [1], 2) )
    flatten([[A114123(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Nov 20 2021

Formula

T(n, k) = Sum_{j=0..n} C(2*k,n-k-j)*C(n-k,j)*2^(n-k-j).
T(n, k) = Sum_{j=0..n-k} C(2*k,j)*C(n-k,j)*2^j.
Sum_{k=0..n} T(n, k) = A099463(n+1).
Sum_{k=0..floor(n/2)} T(n, k) = A116404(n).
T(n, k) = hypergeom([-2*k, k-n], [1], 2). - Peter Luschny, Sep 16 2014
T(n, n-k) = A184883(n, k). - G. C. Greubel, Nov 20 2021
Showing 1-3 of 3 results.