cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A099463 Bisection of tribonacci numbers.

Original entry on oeis.org

0, 1, 2, 7, 24, 81, 274, 927, 3136, 10609, 35890, 121415, 410744, 1389537, 4700770, 15902591, 53798080, 181997601, 615693474, 2082876103, 7046319384, 23837527729, 80641778674, 272809183135, 922906855808, 3122171529233
Offset: 0

Views

Author

Paul Barry, Oct 16 2004

Keywords

Comments

Binomial transform of A099462.
From Paul Barry, Feb 07 2006: (Start)
a(n+1) gives row sums of number triangle A114123 or A184883.
Partial sums are A113300. (End)

Crossrefs

Programs

  • Magma
    [n le 3 select (n-1) else 3*Self(n-1) +Self(n-2) +Self(n-3): n in [1..31]]; // G. C. Greubel, Nov 20 2021
    
  • Mathematica
    LinearRecurrence[{3,1,1},{0,1,2},30] (* or *) Join[{0},Mean/@ Partition[ LinearRecurrence[ {1,1,1},{1,1,1},60],2]] (* Harvey P. Dale, Apr 02 2012 *)
  • Sage
    def A184883(n, k): return simplify( hypergeometric([-k, 2*(k-n)], [1], 2) )
    def A099463(n): return sum( A184883(n, k) for k in (0..n) )
    [0]+[A099463(n-1) for n in (1..40)] # G. C. Greubel, Nov 20 2021

Formula

G.f.: x*(1-x)/(1-3*x-x^2-x^3).
a(n) = Sum_{k=0..n} binomial(n, k)*Sum_{j=0..floor((k-1)/2)} binomial(j, k-2*j-1)*4^j.
From Paul Barry, Feb 07 2006: (Start)
a(n) = 3*a(n-1) + a(n-2) + a(n-3).
a(n) = Sum_{k=0..n} Sum_{j=0..n} C(2*k, n-k-j)*C(n-k, j)*2^(n-k-j). (End)
a(n)/a(n-1) tends to 3.38297576..., the square of the tribonacci constant A058265. - Gary W. Adamson, Feb 28 2006
If p[1]=2, p[2]=3, p[i]=4, (i>2), and if A is Hessenberg matrix of order n defined by: A[i,j] = p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n+1) = det A. - Milan Janjic, May 02 2010

A116404 Expansion of (1-x)/((1-x)^2 - x^2*(1+x)^2).

Original entry on oeis.org

1, 1, 2, 6, 15, 35, 84, 204, 493, 1189, 2870, 6930, 16731, 40391, 97512, 235416, 568345, 1372105, 3312554, 7997214, 19306983, 46611179, 112529340, 271669860, 655869061, 1583407981, 3822685022, 9228778026, 22280241075, 53789260175
Offset: 0

Views

Author

Paul Barry, Feb 07 2006

Keywords

Comments

Diagonal sums of number triangle A114123.
Binomial transform of A114122.
Congruent to 1,1,0,0,1,1,... modulo 2.

Crossrefs

Programs

  • Magma
    I:=[1,1,2,6]; [n le 4 select I[n] else 2*Self(n-1)+2*Self(n-3)+Self(n-4): n in [1..36]]; // Vincenzo Librandi, Aug 19 2017
    
  • Mathematica
    LinearRecurrence[{2,0,2,1}, {1,1,2,6}, 35] (* Emanuele Munarini, Apr 27 2017 *)
    CoefficientList[Series[(1-x)/((1-x)^2 -x^2(1+x)^2), {x, 0, 35}], x] (* Vincenzo Librandi, Aug 19 2017 *)
  • PARI
    Vec((1-x)/((1-x)^2-x^2*(1+x)^2) + O(x^40)) \\ Michel Marcus, Aug 19 2017
    
  • Sage
    def A116404(n): return sum( round( hypergeometric([-n+2*k, -2*k], [1], 2) ) for k in (0..n//2) )
    [A116404(n) for n in (0..35)] # G. C. Greubel, Nov 20 2021

Formula

G.f.: (1-x)/(1 - 2*x - 2*x^3 - x^4).
a(n) = 2*a(n-1) + 2*a(n-3) + a(n-4).
a(n) = Sum_{k=0..floor(n/2)} Sum_{j=0..n-k} C(2*k,n-2*k-j)*C(n-2*k,j)*2^(n-2*k-j).
2*a(n) = A056594(n) + A000129(n+1). - R. J. Mathar, Oct 25 2011
a(n) = Sum_{k=0..floor(n/2)} hypergeometric2F1([-2*k, -n+2*k], [1], 2). - G. C. Greubel, Nov 20 2021

A184883 Number triangle T(n,k) = [k<=n]*Hypergeometric2F1([-k, 2k-2n], [1], 2).

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 9, 13, 1, 1, 13, 41, 25, 1, 1, 17, 85, 129, 41, 1, 1, 21, 145, 377, 321, 61, 1, 1, 25, 221, 833, 1289, 681, 85, 1, 1, 29, 313, 1561, 3649, 3653, 1289, 113, 1, 1, 33, 421, 2625, 8361, 13073, 8989, 2241, 145, 1, 1, 37, 545, 4089, 16641, 36365, 40081, 19825, 3649, 181, 1
Offset: 0

Views

Author

Paul Barry, Jan 24 2011

Keywords

Examples

			Triangle begins
  1;
  1,  1;
  1,  5,   1;
  1,  9,  13,    1;
  1, 13,  41,   25,     1;
  1, 17,  85,  129,    41,     1;
  1, 21, 145,  377,   321,    61,     1;
  1, 25, 221,  833,  1289,   681,    85,     1;
  1, 29, 313, 1561,  3649,  3653,  1289,   113,    1;
  1, 33, 421, 2625,  8361, 13073,  8989,  2241,  145,   1;
  1, 37, 545, 4089, 16641, 36365, 40081, 19825, 3649, 181, 1;
		

Crossrefs

Cf. A099463 (row sums), A114123, A184884 (diagonal sums).

Programs

  • Magma
    T:= func< n,k | (&+[Binomial(k,j)*Binomial(2*(n-k), j)*2^j: j in [0..k]]) >;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 19 2021
    
  • Mathematica
    A184883[n_, k_]:= Hypergeometric2F1[-k, 2*(k-n), 1, 2];
    Table[A184883[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 19 2021 *)
  • Sage
    def A184883(n,k): return simplify( hypergeometric([-k, 2*(k-n)], [1], 2) )
    flatten([[A184883(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Nov 19 2021

Formula

T(n,k) = [k<=n]*Sum_{j=0..k} C(2*n-2*k,j)*C(k,j)*2^j.
T(n, n-k) = A114123(n, k).
Sum_{k=0..n} T(n, k) = A099463(n+1).
Sum_{k=0..floor(n/2)} T(n, k) = A184884(n).
T(n, k) = Hypergeometric2F1([-k, 2*(k-n)], [1], 2). - G. C. Greubel, Nov 19 2021

A216182 Riordan array ((1+x)/(1-x)^2, x(1+x)^2/(1-x)^2).

Original entry on oeis.org

1, 3, 1, 5, 7, 1, 7, 25, 11, 1, 9, 63, 61, 15, 1, 11, 129, 231, 113, 19, 1, 13, 231, 681, 575, 181, 23, 1, 15, 377, 1683, 2241, 1159, 265, 27, 1, 17, 575, 3653, 7183, 5641, 2047, 365, 31, 1, 19, 833, 7183, 19825, 22363, 11969, 3303, 481, 35, 1
Offset: 0

Views

Author

Philippe Deléham, Mar 11 2013

Keywords

Comments

Triangle formed of odd-numbered columns of the Delannoy triangle A008288.

Examples

			Triangle begins
   1;
   3,   1;
   5,   7,    1;
   7,  25,   11,    1;
   9,  63,   61,   15,    1;
  11, 129,  231,  113,   19,    1;
  13, 231,  681,  575,  181,   23,   1;
  15, 377, 1683, 2241, 1159,  265,  27,  1;
  17, 575, 3653, 7183, 5641, 2047, 365, 31, 1;
  ...
		

Crossrefs

Cf. (columns:) A005408, A001845, A001847, A001849, A008419.
Cf. Diagonals: A000012, A004767, A060820.
Cf. A008288 (Delannoy triangle), A114123 (even-numbered columns of A008288).

Programs

  • Mathematica
    A216182[n_, k_]:= Hypergeometric2F1[-n +k, -2*k-1, 1, 2];
    Table[A216182[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 19 2021 *)
  • Sage
    def A216182(n,k): return simplify( hypergeometric([-n+k, -2*k-1], [1], 2) )
    flatten([[A216182(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Nov 19 2021

Formula

T(2n, n) = A108448(n+1).
Sum_{k=0..n} T(n,k) = A073717(n+1).
From G. C. Greubel, Nov 19 2021: (Start)
T(n, k) = A008288(n+k+1, 2*k+1).
T(n, k) = hypergeometric([-n+k, -2*k-1], [1], 2). (End)

A112743 An aerated Delannoy triangle.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 3, 0, 1, 1, 0, 5, 0, 1, 0, 5, 0, 7, 0, 1, 1, 0, 13, 0, 9, 0, 1, 0, 7, 0, 25, 0, 11, 0, 1, 1, 0, 25, 0, 41, 0, 13, 0, 1, 0, 9, 0, 63, 0, 61, 0, 15, 0, 1, 1, 0, 41, 0, 129, 0, 85, 0, 17, 0, 1, 0, 11, 0, 129, 0, 231, 0, 113, 0, 19, 0, 1, 1, 0, 61, 0, 321, 0, 377, 0, 145, 0, 21, 0, 1
Offset: 0

Views

Author

Paul Barry, Sep 17 2005

Keywords

Comments

Diagonal sums are aerated Pell numbers.

Examples

			Rows begin
  1;
  0,  1;
  1,  0,  1;
  0,  3,  0,  1;
  1,  0,  5,  0,  1;
  0,  5,  0,  7,  0,  1;
  1,  0, 13,  0,  9,  0,  1;
  0,  7,  0, 25,  0, 11,  0,  1;
  1,  0, 25,  0, 41,  0, 13,  0,  1;
		

Crossrefs

Programs

  • Magma
    function T(n,k)
      if k lt 0 or k gt n then return 0;
      elif k eq n then return 1;
      elif k eq 0 then return (1+(-1)^n)/2;
      else return T(n-1,k-1) + T(n-2,k) + T(n-3,k-1);
      end if;
      return T;
    end function;
    [T(n,k): k in [0..n], n in [0..14]]; // G. C. Greubel, Nov 20 2021
    
  • Mathematica
    A008288[n_, k_]:= Hypergeometric2F1[-n, -k, 1, 2];
    T[n_, k_]:= T[n, k]= (1+(-1)^(n-k))*A008288[(n-k)/2, k]/2;
    Table[T[n, k], {n,0,14}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 20 2021 *)
  • Sage
    def A008288(n, k): return simplify( hypergeometric([-n, -k], [1], 2) )
    def A112743(n, k): return (1 + (-1)^(n-k))*A008288((n-k)/2, k)/2
    flatten([[A112743(n,k) for k in (0..n)] for n in (0..14)]) # G. C. Greubel, Nov 20 2021

Formula

Riordan array (1/(1-x^2), x*(1+x^2)/(1-x^2)).
T(n,k) = Sum_{j=0..k} (1+(-1)^(n-k))*binomial(k,j)*binomial((n-k)/2,j)*2^(j-1).
Sum_{k=0..n} T(n, k) = A000073(n).
T(n,k) = T(n-1,k-1) + T(n-2,k) + T(n-3,k-1). - Philippe Deléham, Mar 11 2013
Showing 1-5 of 5 results.