cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A073717 a(n) = T(2n+1), where T(n) are the tribonacci numbers A000073.

Original entry on oeis.org

0, 1, 4, 13, 44, 149, 504, 1705, 5768, 19513, 66012, 223317, 755476, 2555757, 8646064, 29249425, 98950096, 334745777, 1132436852, 3831006429, 12960201916, 43844049029, 148323355432, 501774317241, 1697490356184, 5742568741225
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Aug 05 2002

Keywords

Comments

In general, the bisection of a third-order linear recurrence with signature (x,y,z) will result in a third-order recurrence with signature (x^2 + 2*y, 2*z*x - y^2, z^2). - Gary Detlefs, May 29 2024

Crossrefs

Row sums of A216182.

Programs

  • Magma
    [n le 3 select (n-1)^2 else 3*Self(n-1) +Self(n-2) +Self(n-3): n in [1..31]]; // G. C. Greubel, Nov 19 2021
    
  • Mathematica
    CoefficientList[Series[(x+x^2)/(1-3x-x^2-x^3), {x, 0, 30}], x]
    LinearRecurrence[{3,1,1},{0,1,4},30] (* Harvey P. Dale, Sep 07 2015 *)
  • Sage
    def A073717_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x*(1+x)/(1-3*x-x^2-x^3) ).list()
    A073717_list(30) # G. C. Greubel, Nov 19 2021

Formula

a(n) = 3*a(n-1) + a(n-2) + a(n-3), a(0)=0, a(1)=1, a(2)=4.
G.f.: x*(1+x)/(1-3*x-x^2-x^3).
a(n+1) = Sum_{k=0..n} A216182(n,k). - Philippe Deléham, Mar 11 2013
a(n) = A113300(n-1) + A113300(n). - R. J. Mathar, Jul 04 2019

A112743 An aerated Delannoy triangle.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 3, 0, 1, 1, 0, 5, 0, 1, 0, 5, 0, 7, 0, 1, 1, 0, 13, 0, 9, 0, 1, 0, 7, 0, 25, 0, 11, 0, 1, 1, 0, 25, 0, 41, 0, 13, 0, 1, 0, 9, 0, 63, 0, 61, 0, 15, 0, 1, 1, 0, 41, 0, 129, 0, 85, 0, 17, 0, 1, 0, 11, 0, 129, 0, 231, 0, 113, 0, 19, 0, 1, 1, 0, 61, 0, 321, 0, 377, 0, 145, 0, 21, 0, 1
Offset: 0

Views

Author

Paul Barry, Sep 17 2005

Keywords

Comments

Diagonal sums are aerated Pell numbers.

Examples

			Rows begin
  1;
  0,  1;
  1,  0,  1;
  0,  3,  0,  1;
  1,  0,  5,  0,  1;
  0,  5,  0,  7,  0,  1;
  1,  0, 13,  0,  9,  0,  1;
  0,  7,  0, 25,  0, 11,  0,  1;
  1,  0, 25,  0, 41,  0, 13,  0,  1;
		

Crossrefs

Programs

  • Magma
    function T(n,k)
      if k lt 0 or k gt n then return 0;
      elif k eq n then return 1;
      elif k eq 0 then return (1+(-1)^n)/2;
      else return T(n-1,k-1) + T(n-2,k) + T(n-3,k-1);
      end if;
      return T;
    end function;
    [T(n,k): k in [0..n], n in [0..14]]; // G. C. Greubel, Nov 20 2021
    
  • Mathematica
    A008288[n_, k_]:= Hypergeometric2F1[-n, -k, 1, 2];
    T[n_, k_]:= T[n, k]= (1+(-1)^(n-k))*A008288[(n-k)/2, k]/2;
    Table[T[n, k], {n,0,14}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 20 2021 *)
  • Sage
    def A008288(n, k): return simplify( hypergeometric([-n, -k], [1], 2) )
    def A112743(n, k): return (1 + (-1)^(n-k))*A008288((n-k)/2, k)/2
    flatten([[A112743(n,k) for k in (0..n)] for n in (0..14)]) # G. C. Greubel, Nov 20 2021

Formula

Riordan array (1/(1-x^2), x*(1+x^2)/(1-x^2)).
T(n,k) = Sum_{j=0..k} (1+(-1)^(n-k))*binomial(k,j)*binomial((n-k)/2,j)*2^(j-1).
Sum_{k=0..n} T(n, k) = A000073(n).
T(n,k) = T(n-1,k-1) + T(n-2,k) + T(n-3,k-1). - Philippe Deléham, Mar 11 2013
Showing 1-2 of 2 results.