cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A326329 Number of simple graphs covering {1..n} with no crossing or nesting edges.

Original entry on oeis.org

1, 0, 1, 4, 13, 44, 149, 504, 1705, 5768, 19513, 66012
Offset: 0

Views

Author

Gus Wiseman, Jun 27 2019

Keywords

Comments

Covering means there are no isolated vertices. Two edges {a,b}, {c,d} are crossing if a < c < b < d or c < a < d < b, and nesting if a < c < d < b or c < a < b < d.
Is this (apart from offsets) the same as A073717? - R. J. Mathar, Jul 04 2019

Crossrefs

The case for set partitions is A001519.
Covering simple graphs are A006129.
The case with just nesting or just crossing edges forbidden is A324169.
The binomial transform is the non-covering case A326244.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&!MatchQ[#,{_,{x_,y_},_,{z_,t_},_}/;x
    				

A216182 Riordan array ((1+x)/(1-x)^2, x(1+x)^2/(1-x)^2).

Original entry on oeis.org

1, 3, 1, 5, 7, 1, 7, 25, 11, 1, 9, 63, 61, 15, 1, 11, 129, 231, 113, 19, 1, 13, 231, 681, 575, 181, 23, 1, 15, 377, 1683, 2241, 1159, 265, 27, 1, 17, 575, 3653, 7183, 5641, 2047, 365, 31, 1, 19, 833, 7183, 19825, 22363, 11969, 3303, 481, 35, 1
Offset: 0

Views

Author

Philippe Deléham, Mar 11 2013

Keywords

Comments

Triangle formed of odd-numbered columns of the Delannoy triangle A008288.

Examples

			Triangle begins
   1;
   3,   1;
   5,   7,    1;
   7,  25,   11,    1;
   9,  63,   61,   15,    1;
  11, 129,  231,  113,   19,    1;
  13, 231,  681,  575,  181,   23,   1;
  15, 377, 1683, 2241, 1159,  265,  27,  1;
  17, 575, 3653, 7183, 5641, 2047, 365, 31, 1;
  ...
		

Crossrefs

Cf. (columns:) A005408, A001845, A001847, A001849, A008419.
Cf. Diagonals: A000012, A004767, A060820.
Cf. A008288 (Delannoy triangle), A114123 (even-numbered columns of A008288).

Programs

  • Mathematica
    A216182[n_, k_]:= Hypergeometric2F1[-n +k, -2*k-1, 1, 2];
    Table[A216182[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 19 2021 *)
  • Sage
    def A216182(n,k): return simplify( hypergeometric([-n+k, -2*k-1], [1], 2) )
    flatten([[A216182(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Nov 19 2021

Formula

T(2n, n) = A108448(n+1).
Sum_{k=0..n} T(n,k) = A073717(n+1).
From G. C. Greubel, Nov 19 2021: (Start)
T(n, k) = A008288(n+k+1, 2*k+1).
T(n, k) = hypergeometric([-n+k, -2*k-1], [1], 2). (End)

A075536 a(n) = ((1+(-1)^n)*T(n+1) + (1-(-1)^n)*S(n))/2, where T(n) = tribonacci numbers A000073, S(n) = generalized tribonacci numbers A001644.

Original entry on oeis.org

0, 1, 1, 7, 4, 21, 13, 71, 44, 241, 149, 815, 504, 2757, 1705, 9327, 5768, 31553, 19513, 106743, 66012, 361109, 223317, 1221623, 755476, 4132721, 2555757, 13980895, 8646064, 47297029, 29249425, 160004703, 98950096, 541292033, 334745777
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Sep 23 2002

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); [0] cat Coefficients(R!( x*(1+x+4*x^2+x^3-x^4)/(1-3*x^2-x^4-x^6) )); // G. C. Greubel, Apr 21 2019
    
  • Maple
    A075536 := proc(n)
        if type(n,'even') then
            A000073(n+1) ;
        else
            A001644(n) ;
        end if;
    end proc:
    seq(A075536(n),n=0..80) ; # R. J. Mathar, Aug 05 2021
  • Mathematica
    CoefficientList[Series[(x+x^2+4x^3+x^4-x^5)/(1-3x^2-x^4-x^6), {x, 0, 40}], x]
    LinearRecurrence[{0,3,0,1,0,1},{0,1,1,7,4,21},40] (* Harvey P. Dale, Jul 10 2012 *)
  • PARI
    my(x='x+O('x^40)); concat([0], Vec(x*(1+x+4*x^2+x^3-x^4)/(1-3*x^2-x^4-x^6))) \\ G. C. Greubel, Apr 21 2019
    
  • Sage
    (x*(1+x+4*x^2+x^3-x^4)/(1-3*x^2-x^4-x^6)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 21 2019

Formula

a(2n) = A073717(n) = A000073(2n+1).
a(2n+1) = A001644(2n+1).
a(n) = 3*a(n-2) + a(n-4) + a(n-6), a(0)=0, a(1)=1, a(2)=1, a(3)=7, a(4)=4, a(5)=21.
O.g.f.: x*(1 + x + 4*x^2 + x^3 - x^4)/(1 - 3*x^2 - x^4 - x^6).

Extensions

Index in definition corrected. - R. J. Mathar, Aug 05 2021
Showing 1-3 of 3 results.