cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A008288 Square array of Delannoy numbers D(i,j) (i >= 0, j >= 0) read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 5, 1, 1, 7, 13, 7, 1, 1, 9, 25, 25, 9, 1, 1, 11, 41, 63, 41, 11, 1, 1, 13, 61, 129, 129, 61, 13, 1, 1, 15, 85, 231, 321, 231, 85, 15, 1, 1, 17, 113, 377, 681, 681, 377, 113, 17, 1, 1, 19, 145, 575, 1289, 1683, 1289, 575, 145, 19, 1, 1, 21, 181, 833, 2241, 3653, 3653
Offset: 0

Views

Author

Keywords

Comments

In the Formula section, some contributors use T(n,k) = D(n-k, k) (for 0 <= k <= n), which is the triangular version of the square array (D(n,k): n,k >= 0). Conversely, D(n,k) = T(n+k,k) for n,k >= 0. - Petros Hadjicostas, Aug 05 2020
Also called the tribonacci triangle [Alladi and Hoggatt (1977)]. - N. J. A. Sloane, Mar 23 2014
D(n,k) is the number of lattice paths from (0,0) to (n,k) using steps (1,0), (0,1), (1,1). - Joerg Arndt, Jul 01 2011 [Corrected by N. J. A. Sloane, May 30 2020]
Or, triangle read by rows of coefficients of polynomials P[n](x) defined by P[0] = 1, P[1] = x+1; for n >= 2, P[n] = (x+1)*P[n-1] + x*P[n-2].
D(n, k) is the number of k-matchings of a comb-like graph with n+k teeth. Example: D(1, 3) = 7 because the graph consisting of a horizontal path ABCD and the teeth Aa, Bb, Cc, Dd has seven 3-matchings: four triples of three teeth and the three triples {Aa, Bb, CD}, {Aa, Dd, BC}, {Cc, Dd, AB}. Also D(3, 1)=7, the 1-matchings of the same graph being the seven edges: {AB}, {BC}, {CD}, {Aa}, {Bb}, {Cc}, {Dd}. - Emeric Deutsch, Jul 01 2002
Sum of n-th antidiagonal of the array D is A000129(n+1). - Reinhard Zumkeller, Dec 03 2004 [Edited by Petros Hadjicostas, Aug 05 2020 so that the counting of antidiagonals of D starts at n = 0. That is, the sum of the terms in the n-th row of the triangles T is A000129(n+1).]
The A-sequence for this Riordan type triangle (see one of Paul Barry's comments under Formula) is A112478 and the Z-sequence the trivial: {1, 0, 0, 0, ...}. See the W. Lang link under A006232 for Sheffer a- and z-sequences where also Riordan A- and Z-sequences are explained. This leads to the recurrence for the triangle given below. - Wolfdieter Lang, Jan 21 2008
The triangle or chess sums, see A180662 for their definitions, link the Delannoy numbers with twelve different sequences, see the crossrefs. All sums come in pairs due to the symmetrical nature of this triangle. The knight sums Kn14 and Kn15 have been added. It is remarkable that all knight sums are related to the tribonacci numbers, that is, A000073 and A001590, but none of the others. - Johannes W. Meijer, Sep 22 2010
This sequence, A008288, is jointly generated with A035607 as an array of coefficients of polynomials u(n,x): initially, u(1,x) = v(1,x) = 1; for n > 1, u(n,x) = x*u(n-1,x) + v(n-1) and v(n,x) = 2*x*u(n-1,x) + v(n-1,x). See the Mathematica section. - Clark Kimberling, Mar 09 2012
Row n, for n > 0, of Roger L. Bagula's triangle in the Example section shows the coefficients of the polynomial u(n) = c(0) + c(1)*x + ... + c(n)*x^n which is the numerator of the n-th convergent of the continued fraction [k, k, k, ...], where k = sqrt(x) + 1/sqrt(x); see A230000. - Clark Kimberling, Nov 13 2013
In an n-dimensional hypercube lattice, D(n,k) gives the number of nodes situated at a Minkowski (Manhattan) distance of k from a given node. In cellular automata theory, the cells at Manhattan distance k are called the von Neumann neighborhood of radius k. For k=1, see A005843. - Dmitry Zaitsev, Dec 10 2015
These numbers appear as the coefficients of series relating spherical and bispherical harmonics, in the solutions of Laplace's equation in 3D. [Majic 2019, Eq. 22] - Matt Majic, Nov 24 2019
From Peter Bala, Feb 19 2020: (Start)
The following remarks assume an offset of 1 in the row and column indices of the triangle.
The sequence of row polynomials T(n,x), beginning with T(1,x) = x, T(2,x) = x + x^2, T(3,x) = x + 3*x^2 + x^3, ..., is a strong divisibility sequence of polynomials in the ring Z[x]; that is, for all positive integers n and m, poly_gcd(T(n,x), T(m,x)) = T(gcd(n, m), x) - apply Norfleet (2005), Theorem 3. Consequently, the sequence (T(n,x): n >= 1) is a divisibility sequence in the polynomial ring Z[x]; that is, if n divides m then T(n,x) divides T(m,x) in Z[x].
Let S(x) = 1 + 2*x + 6*x^2 + 22*x^3 + ... denote the o.g.f. for the large Schröder numbers A006318. The power series (x*S(x))^n, n = 2, 3, 4, ..., can be expressed as a linear combination with polynomial coefficients of S(x) and 1: (x*S(x))^n = T(n-1,-x) - T(n,-x)*S(x). The result can be extended to negative integer n if we define T(0,x) = 0 and T(-n,x) = (-1)^(n+1) * T(n,x)/x^n. Cf. A115139.
[In the previous two paragraphs, D(n,x) was replaced with T(n,x) because the contributor is referring to the rows of the triangle T(n,k), not the rows of the array D(n,k). - Petros Hadjicostas, Aug 05 2020] (End)
Named after the French amateur mathematician Henri-Auguste Delannoy (1833-1915). - Amiram Eldar, Apr 15 2021
D(i,j) = D(j,i). With this and Dmitry Zaitsev's Dec 10 2015 comment, D(i,j) can be considered the number of points at L1 distance <= i in Z^j or the number of points at L1 distance <= j in Z^i from any given point. The rows and columns of D(i,j) are the crystal ball sequences on cubic lattices. See the first example below. The n-th term in the k-th crystal ball sequence can be considered the number of points at distance <= n from any point in a k-dimensional cubic lattice, or the number of points at distance <= k from any point in an n-dimensional cubic lattice. - Shel Kaphan, Jan 01 2023 and Jan 07 2023
Dimensions of hom spaces Hom(R^{(i)}, R^{(j)}) in the Delannoy category attached to the oligomorphic group of order preserving self-bijections of the real line. - Noah Snyder, Mar 22 2023

Examples

			The square array D(i,j) (i >= 0, j >= 0) begins:
  1, 1,  1,   1,   1,   1,    1,    1,    1,    1, ... = A000012
  1, 3,  5,   7,   9,  11,   13,   15,   17,   19, ... = A005408
  1, 5, 13,  25,  41,  61,   85,  113,  145,  181, ... = A001844
  1, 7, 25,  63, 129, 231,  377,  575,  833, 1159, ... = A001845
  1, 9, 41, 129, 321, 681, 1289, 2241, 3649, 5641, ... = A001846
  ...
For D(2,5) = 61, which is seen above in the row labeled A001844, we calculate the sum (9 + 11 + 41) of the 3 nearest terms above and/or to the left. - _Peter Munn_, Jan 01 2023
D(2,5) = 61 can also be obtained from the row labeled A005408 using a recurrence mentioned in the formula section:  D(2,5) = D(1,5) + 2*Sum_{k=0..4} D(1,k), so D(2,5) = 11 + 2*(1+3+5+7+9) = 11 + 2*25. - _Shel Kaphan_, Jan 01 2023
As a triangular array (on its side) this begins:
   0,   0,   0,   0,   1,   0,  11,   0, ...
   0,   0,   0,   1,   0,   9,   0,  61, ...
   0,   0,   1,   0,   7,   0,  41,   0, ...
   0,   1,   0,   5,   0,  25,   0, 129, ...
   1,   0,   3,   0,  13,   0,  63,   0, ...
   0,   1,   0,   5,   0,  25,   0, 129, ...
   0,   0,   1,   0,   7,   0,  41,   0, ...
   0,   0,   0,   1,   0,   9,   0,  61, ...
   0,   0,   0,   0,   1,   0,  11,   0, ...
   [Edited by _Shel Kaphan_, Jan 01 2023]
From _Roger L. Bagula_, Dec 09 2008: (Start)
As a triangle T(n,k) (with rows n >= 0 and columns k = 0..n), this begins:
   1;
   1,  1;
   1,  3,   1;
   1,  5,   5,   1;
   1,  7,  13,   7,    1;
   1,  9,  25,  25,    9,    1;
   1, 11,  41,  63,   41,   11,    1;
   1, 13,  61, 129,  129,   61,   13,   1;
   1, 15,  85, 231,  321,  231,   85,  15,   1;
   1, 17, 113, 377,  681,  681,  377, 113,  17,  1;
   1, 19, 145, 575, 1289, 1683, 1289, 575, 145, 19, 1;
   ... (End)
Triangle T(n,k) recurrence: 63 = T(6,3) = 25 + 13 + 25 = T(5,2) + T(4,2) + T(5,3).
Triangle T(n,k) recurrence with A-sequence A112478: 63 = T(6,3) = 1*25 + 2*25 - 2*9 + 6*1 (T entries from row n = 5 only). [Here the formula T(n,k) = Sum_{j=0..n-k} A112478(j) * T(n-1, k-1+j) is used with n = 6 and k = 3; i.e., T(6,3) = Sum_{j=0..3} A111478(j) * T(5, 2+j). - _Petros Hadjicostas_, Aug 05 2020]
From _Philippe Deléham_, Mar 29 2012: (Start)
Subtriangle of the triangle given by (1, 0, 1, -1, 0, 0, 0, ...) DELTA (0, 1, 0, 0, 0, ...) where DELTA is the operator defined in A084938:
   1;
   1,  0;
   1,  1,  0;
   1,  3,  1,  0;
   1,  5,  5,  1,  0;
   1,  7, 13,  7,  1,  0;
   1,  9, 25, 25,  9,  1, 0;
   1, 11, 41, 63, 41, 11, 1, 0;
   ...
Subtriangle of the triangle given by (0, 1, 0, 0, 0, ...) DELTA (1, 0, 1, -1, 0, 0, 0, ...) where DELTA is the operator defined in A084938:
   1;
   0, 1;
   0, 1,  1;
   0, 1,  3,  1;
   0, 1,  5,  5,  1;
   0, 1,  7, 13,  7,  1;
   0, 1,  9, 25, 25,  9,  1;
   0, 1, 11, 41, 63, 41, 11, 1;
   ... (End)
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 593.
  • Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 81.
  • L. Moser and W. Zayachkowski, Lattice paths with diagonal steps, Scripta Mathematica, 26 (1963), 223-229.
  • G. Picou, Note #2235, L'Intermédiaire des Mathématiciens, 8 (1901), page 281. - N. J. A. Sloane, Mar 02 2022
  • D. B. West, Combinatorial Mathematics, Cambridge, 2021, p. 28.

Crossrefs

Sums of antidiagonals: A000129 (Pell numbers).
Main diagonal: A001850 (central Delannoy numbers), which has further information and references.
A002002, A026002, and A190666 are +-k-diagonals for k=1, 2, 3 resp. - Shel Kaphan, Jan 01 2023
See also A027618.
Cf. A059446.
Has same main diagonal as A064861. Different from A100936.
Read mod small primes: A211312, A211313, A211314, A211315.
Triangle sums (see the comments): A000129 (Row1); A056594 (Row2); A000073 (Kn11 & Kn21); A089068 (Kn12 & Kn22); A180668 (Kn13 & Kn23); A180669 (Kn14 & Kn24); A180670 (Kn15 & Kn25); A099463 (Kn3 & Kn4); A116404 (Fi1 & Fi2); A006498 (Ca1 & Ca2); A006498(3*n) (Ca3 & Ca4); A079972 (Gi1 & Gi2); A079972(4*n) (Gi3 & Gi4); A079973(3*n) (Ze1 & Ze2); A079973(2*n) (Ze3 & Ze4).
Cf. A102413, A128966. (D(n,1)) = A005843. Cf. A115139.

Programs

  • Haskell
    a008288 n k = a008288_tabl !! n !! k
    a008288_row n = a008288_tabl !! n
    a008288_tabl = map fst $ iterate
        (\(us, vs) -> (vs, zipWith (+) ([0] ++ us ++ [0]) $
                           zipWith (+) ([0] ++ vs) (vs ++ [0]))) ([1], [1, 1])
    -- Reinhard Zumkeller, Jul 21 2013
    
  • Maple
    A008288 := proc(n, k) option remember; if k = 0 then 1 elif n=k then 1 else procname(n-1, k-1) + procname(n-2, k-1) + procname(n-1, k) end if; end proc: seq(seq(A008288(n,k),k=0..n), n=0..10); # triangular indices n and k
    P[0]:=1; P[1]:=x+1; for n from 2 to 12 do P[n]:=expand((x+1)*P[n-1]+x*P[n-2]); lprint(P[n]); lprint(seriestolist(series(P[n],x,200))); end do:
  • Mathematica
    (* Next, A008288 jointly generated with A035607 *)
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := x*u[n - 1, x] + v[n - 1, x];
    v[n_, x_] := 2 x*u[n - 1, x] + v[n - 1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A008288 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A035607 *)
    (* Clark Kimberling, Mar 09 2012 *)
    d[n_, k_] := Binomial[n+k, k]*Hypergeometric2F1[-k, -n, -n-k, -1]; A008288 = Flatten[Table[d[n-k, k], {n, 0, 12}, {k, 0, n}]] (* Jean-François Alcover, Apr 05 2012, after 3rd formula *)
  • Python
    from functools import cache
    @cache
    def delannoy_row(n: int) -> list[int]:
        if n == 0: return [1]
        if n == 1: return [1, 1]
        rov = delannoy_row(n - 2)
        row = delannoy_row(n - 1) + [1]
        for k in range(n - 1, 0, -1):
            row[k] += row[k - 1] + rov[k - 1]
        return row
    for n in range(10): print(delannoy_row(n))  # Peter Luschny, Jul 30 2023
  • Sage
    for k in range(8):  # seen as an array, read row by row
        a = lambda n: hypergeometric([-n, -k], [1], 2)
        print([simplify(a(n)) for n in range(11)]) # Peter Luschny, Nov 19 2014
    

Formula

D(n, 0) = 1 = D(0, n) for n >= 0; D(n, k) = D(n, k-1) + D(n-1, k-1) + D(n-1, k).
Bivariate o.g.f.: Sum_{n >= 0, k >= 0} D(n, k)*x^n*y^k = 1/(1 - x - y - x*y).
D(n, k) = Sum_{d = 0..min(n,k)} binomial(k, d)*binomial(n+k-d, k) = Sum_{d=0..min(n,k)} 2^d*binomial(n, d)*binomial(k, d). [Edited by Petros Hadjicostas, Aug 05 2020]
Seen as a triangle read by rows: T(n, 0) = T(n, n) = 1 for n >= 0 and T(n, k) = T(n-1, k-1) + T(n-2, k-1) + T(n-1, k), 0 < k < n and n > 1. - Reinhard Zumkeller, Dec 03 2004
Read as a number triangle, this is the Riordan array (1/(1-x), x(1+x)/(1-x)) with T(n, k) = Sum_{j=0..n-k} C(n-k, j) * C(k, j) * 2^j. - Paul Barry, Jul 18 2005
T(n,k) = Sum_{j=0..n-k} C(k,j)*C(n-j,k). - Paul Barry, May 21 2006
Let y^k(n) be the number of Khalimsky-continuous functions f from [0,n-1] to Z such that f(0) = 0 and f(n-1) = k. Then y^k(n) = D(i,j) for i = (1/2)*(n-1-k) and j = (1/2)*(n-1+k) where n-1+k belongs to 2Z. - Shiva Samieinia (shiva(AT)math.su.se), Oct 08 2007
Recurrence for triangle from A-sequence (see the Wolfdieter Lang comment above): T(n,k) = Sum_{j=0..n-k} A112478(j) * T(n-1, k-1+j), n >= 1, k >= 1. [For k > n, the sum is empty, in which case T(n,k) = 0.]
From Peter Bala, Jul 17 2008: (Start)
The n-th row of the square array is the crystal ball sequence for the product lattice A_1 x ... x A_1 (n copies). A035607 is the table of the associated coordination sequences for these lattices.
The polynomial p_n(x) := Sum {k = 0..n} 2^k * C(n,k) * C(x,k) = Sum_{k = 0..n} C(n,k) * C(x+k,n), whose values [p_n(0), p_n(1), p_n(2), ... ] give the n-th row of the square array, is the Ehrhart polynomial of the n-dimensional cross polytope (the hyperoctahedron) [Bump et al. (2000), Theorem 6].
The first few values are p_0(x) = 1, p_1(x) = 2*x + 1, p_2(x) = 2*x^2 + 2*x + 1 and p_3(x) = (4*x^3 + 6*x^2 + 8*x + 3)/3.
The reciprocity law p_n(m) = p_m(n) reflects the symmetry of the table.
The polynomial p_n(x) is the unique polynomial solution of the difference equation (x+1)*f(x+1) - x*f(x-1) = (2*n+1)*f(x), normalized so that f(0) = 1.
These polynomials have their zeros on the vertical line Re x = -1/2 in the complex plane; that is, the polynomials p_n(x-1), n = 1,2,3,..., satisfy a Riemann hypothesis [Bump et al. (2000), Theorem 4]. The o.g.f. for the p_n(x) is (1 + t)^x/(1 - t)^(x + 1) = 1 + (2*x + 1)*t + (2*x^2 + 2*x + 1)*t^2 + ... .
The square array of Delannoy numbers has a close connection with the constant log(2). The entries in the n-th row of the array occur in the series acceleration formula log(2) = (1 - 1/2 + 1/3 - ... + (-1)^(n+1)/n) + (-1)^n * Sum_{k>=1} (-1)^(k+1)/(k*D(n,k-1)*D(n,k)). [T(n,k) was replaced with D(n,k) in the formula to agree with the beginning of the paragraph. - Petros Hadjicostas, Aug 05 2020]
For example, the fourth row of the table (n = 3) gives the series log(2) = 1 - 1/2 + 1/3 - 1/(1*1*7) + 1/(2*7*25) - 1/(3*25*63) + 1/(4*63*129) - ... . See A142979 for further details.
Also the main diagonal entries (the central Delannoy numbers) give the series acceleration formula Sum_{n>=1} 1/(n*D(n-1,n-1)*D(n,n)) = (1/2)*log(2), a result due to Burnside. [T(n,n) was replaced here with D(n,n) to agree with the previous paragraphs. - Petros Hadjicostas, Aug 05 2020]
Similar relations hold between log(2) and the crystal ball sequences of the C_n lattices A142992. For corresponding results for the constants zeta(2) and zeta(3), involving the crystal ball sequences for root lattices of type A_n and A_n x A_n, see A108625 and A143007 respectively. (End)
From Peter Bala, Oct 28 2008: (Start)
Hilbert transform of Pascal's triangle A007318 (see A145905 for the definition of this term).
D(n+a,n) = P_n(a,0;3) for all integer a such that a >= -n, where P_n(a,0;x) is the Jacobi polynomial with parameters (a,0) [Hetyei]. The related formula A(n,k) = P_k(0,n-k;3) defines the table of asymmetric Delannoy numbers, essentially A049600. (End)
Seen as a triangle read by rows: T(n, k) = Hyper2F1([k-n, -k], [1], 2). - Peter Luschny, Aug 02 2014, Oct 13 2024.
From Peter Bala, Jun 25 2015: (Start)
O.g.f. for triangle T(n,k): A(z,t) = 1/(1 - (1 + t)*z - t*z^2) = 1 + (1 + t)*z + (1 + 3*t + t^2)*z^2 + (1 + 5*t + 5*t^2 + t^3)*z^3 + ....
1 + z*d/dz(A(z,t))/A(z,t) is the o.g.f. for A102413. (End)
E.g.f. for the n-th subdiagonal of T(n,k), n >= 0, equals exp(x)*P(n,x), where P(n,x) is the polynomial Sum_{k = 0..n} binomial(n,k)*(2*x)^k/k!. For example, the e.g.f. for the second subdiagonal is exp(x)*(1 + 4*x + 4*x^2/2) = 1 + 5*x + 13*x^2/2! + 25*x^3/3! + 41*x^4/4! + 61*x^5/5! + .... - Peter Bala, Mar 05 2017 [The n-th subdiagonal of triangle T(n,k) is the n-th row of array D(n,k).]
Let a_i(n) be multiplicative with a_i(p^e) = D(i, e), p prime and e >= 0, then Sum_{n > 0} a_i(n)/n^s = (zeta(s))^(2*i+1)/(zeta(2*s))^i for i >= 0. - Werner Schulte, Feb 14 2018
Seen as a triangle read by rows: T(n,k) = Sum_{i=0..k} binomial(n-i, i) * binomial(n-2*i, k-i) for 0 <= k <= n. - Werner Schulte, Jan 09 2019
Univariate generating function: Sum_{k >= 0} D(n,k)*z^k = (1 + z)^n/(1 - z)^(n+1). [Dziemianczuk (2013), Eq. 5.3] - Matt Majic, Nov 24 2019
(n+1)*D(n+1,k) = (2*k+1)*D(n,k) + n*D(n-1,k). [Majic (2019), Eq. 22] - Matt Majic, Nov 24 2019
For i, j >= 1, D(i,j) = D(i,j-1) + 2*Sum_{k=0..i-1} D(k,j-1), or, because D(i,j) = D(j,i), D(i,j) = D(i-1,j) + 2*Sum_{k=0..j-1} D(i-1,k). - Shel Kaphan, Jan 01 2023
Sum_{k=0..n} T(n,k)^2 = A026933(n). - R. J. Mathar, Nov 07 2023
Let S(x) = (1 - x - (1 - 6*x + x^2)^(1/2))/(2*x) denote the g.f. of the sequence of large Schröder numbers A006318. Read as a lower triangular array, the signed n-th row polynomial R(n, -x) = 1/sqrt(1 - 6*x + x^2) *( 1/S(x)^(n+1) + (x*S(x))^(n+1) ). For example, R(4, -x) = 1 - 7*x + 13*x^2 - 7*x^3 + x^4 = 1/sqrt(1 - 6*x + x^2) * ( 1/S(x)^5 + (x*S(x))^5 ). Cf. A102413. - Peter Bala, Aug 01 2024

Extensions

Expanded description from Clark Kimberling, Jun 15 1997
Additional references from Sylviane R. Schwer (schwer(AT)lipn.univ-paris13.fr), Nov 28 2001
Changed the notation to make the formulas more precise. - N. J. A. Sloane, Jul 01 2002

A085697 a(n) = T(n)^2, where T(n) = A000073(n) is the n-th tribonacci number.

Original entry on oeis.org

0, 0, 1, 1, 4, 16, 49, 169, 576, 1936, 6561, 22201, 75076, 254016, 859329, 2907025, 9834496, 33269824, 112550881, 380757169, 1288092100, 4357584144, 14741602225, 49870482489, 168710633536, 570743986576, 1930813074369, 6531893843049
Offset: 0

Views

Author

Emanuele Munarini, Jul 18 2003

Keywords

Comments

In general, squaring the terms of a third-order linear recurrence with signature (x,y,z) will result in a sixth-order recurrence with signature (x^2 + y, x^2*y + z*x + y^2, x^3*z + 4*x*y*z - y^3 + 2*z^2, x^2*z^2 - x*y^2*z - z^2*y, z^2*y^2 - z^3*x, -z^4). - Gary Detlefs, Jan 10 2023

References

  • R. Schumacher, Explicit formulas for sums involving the squares of the first n Tribonacci numbers, Fib. Q., 58:3 (2020), 194-202.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); [0,0] cat Coefficients(R!( x^2*(1-x-x^2-x^3)/((1-3*x-x^2-x^3)*(1+x+x^2-x^3)) )); // G. C. Greubel, Nov 20 2021
    
  • Mathematica
    LinearRecurrence[{2,3,6,-1,0,-1},{0,0,1,1,4,16},30] (* Harvey P. Dale, Oct 26 2020 *)
  • Maxima
    t[0]:0$  t[1]:0$  t[2]:1$
    t[n]:=t[n-1]+t[n-2]+t[n-3]$
    makelist(t[n]^2,n,0,40); /* Emanuele Munarini, Mar 01 2011 */
    
  • Sage
    @CachedFunction
    def T(n): # A000073
        if (n<2): return 0
        elif (n==2): return 1
        else: return T(n-1) +T(n-2) +T(n-3)
    def A085697(n): return T(n)^2
    [A085697(n) for n in (0..40)] # G. C. Greubel, Nov 20 2021

Formula

G.f.: x^2*( 1-x-x^2-x^3 )/( (1-3*x-x^2-x^3)*(1+x+x^2-x^3) ).
a(n+6) = 2*a(n+5) + 3*a(n+4) + 6*a(n+3) - a(n+2) - a(n).
a(n) = (-A057597(n-2) + 3*A057597(n-1) + 6*A057597(n) + 5*A113300(n-1) - A099463(n-2))/11. - R. J. Mathar, Aug 19 2008

Extensions

Offset corrected to match A000073 by N. J. A. Sloane, Sep 12 2020
Name corrected to match corrected offset by Michael A. Allen, Jun 10 2021

A113300 Sum of even-indexed terms of tribonacci numbers.

Original entry on oeis.org

0, 1, 3, 10, 34, 115, 389, 1316, 4452, 15061, 50951, 172366, 583110, 1972647, 6673417, 22576008, 76374088, 258371689, 874065163, 2956941266, 10003260650, 33840788379, 114482567053, 387291750188, 1310198605996, 4432370135229, 14994600761871, 50726371026838
Offset: 0

Views

Author

Jonathan Vos Post, Oct 24 2005

Keywords

Comments

Partial sums of A099463. a(n+1) gives row sums of Riordan array (1/(1-x)^2,(1+x)^2/(1-x)^2). Congruent to 0,1,1,0,0,1,1,0,0,... modulo 2. - Paul Barry, Feb 07 2006

Crossrefs

Programs

  • Magma
    I:=[0,1,3]; [n le 3 select I[n] else 3*Self(n-1) +Self(n-2) +Self(n-3): n in [1..61]]; // G. C. Greubel, Nov 19 2021
    
  • Mathematica
    Accumulate[Take[LinearRecurrence[{1,1,1},{0,0,1},60],{1,-1,2}]] (* Harvey P. Dale, Nov 06 2011 *)
    LinearRecurrence[{3,1,1},{0,1,3},40] (* Vladimir Joseph Stephan Orlovsky, Jan 31 2012 *)
    a[ n_] := Sum[ SeriesCoefficient[ SeriesCoefficient[ x / (1 - x - y - x y) , {x, 0, n - k}]^2 , {y, 0, k}], {k, 0, n}]; (* Michael Somos, Jun 27 2017 *)
  • Sage
    @CachedFunction
    def T(n): # T(n) = A000073(n)
        if (n<2): return 0
        elif (n==2): return 1
        else: return T(n-1) +T(n-2) +T(n-3)
    def a(n): return sum( T(2*j) for j in (0..n) )
    [a(n) for n in (0..60)] # G. C. Greubel, Nov 19 2021

Formula

a(n) = Sum_{i=0..n} A000073(2*n).
a(n) = Sum_{i=0..n} A099463(n).
a(n) + A113301(n) = A008937(n).
From Paul Barry, Feb 07 2006: (Start)
G.f.: x/(1 - 3*x - x^2 - x^3).
a(n) = 3*a(n-1) + a(n-2) + a(n-3). (End)

A114123 Riordan array (1/(1-x), x*(1+x)^2/(1-x)^2).

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 13, 9, 1, 1, 25, 41, 13, 1, 1, 41, 129, 85, 17, 1, 1, 61, 321, 377, 145, 21, 1, 1, 85, 681, 1289, 833, 221, 25, 1, 1, 113, 1289, 3653, 3649, 1561, 313, 29, 1, 1, 145, 2241, 8989, 13073, 8361, 2625, 421, 33, 1, 1, 181, 3649, 19825, 40081, 36365, 16641, 4089, 545, 37, 1
Offset: 0

Views

Author

Paul Barry, Feb 07 2006, Oct 22 2006

Keywords

Comments

Row sums are A099463(n+1). Diagonal sums are A116404.
Triangle formed of even-numbered columns of the Delannoy triangle A008288. - Philippe Deléham, Mar 11 2013

Examples

			Triangle begins
  1;
  1,  1;
  1,  5,   1;
  1, 13,   9,   1;
  1, 25,  41,  13,   1;
  1, 41, 129,  85,  17,  1;
  1, 61, 321, 377, 145, 21, 1;
		

Crossrefs

Cf. A008288, A099463 (row sums), A116404 (diagonal sums), A184883.

Programs

  • Magma
    T:= func< n, k | (&+[Binomial(2*k, j)*Binomial(n-k, j)*2^j: j in [0..n-k]]) >;
    [T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 20 2021
    
  • Maple
    T := (n,k) -> hypergeom([-2*k, k-n], [1], 2);
    seq(seq(round(evalf(T(n,k),99)),k=0..n),n=0..9); # Peter Luschny, Sep 16 2014
  • Mathematica
    T[n_, k_] := Hypergeometric2F1[-2k, k-n, 1, 2];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] (* Jean-François Alcover, Jun 13 2019 *)
  • Sage
    def A114123(n,k): return round( hypergeometric([-2*k, k-n], [1], 2) )
    flatten([[A114123(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Nov 20 2021

Formula

T(n, k) = Sum_{j=0..n} C(2*k,n-k-j)*C(n-k,j)*2^(n-k-j).
T(n, k) = Sum_{j=0..n-k} C(2*k,j)*C(n-k,j)*2^j.
Sum_{k=0..n} T(n, k) = A099463(n+1).
Sum_{k=0..floor(n/2)} T(n, k) = A116404(n).
T(n, k) = hypergeom([-2*k, k-n], [1], 2). - Peter Luschny, Sep 16 2014
T(n, n-k) = A184883(n, k). - G. C. Greubel, Nov 20 2021

A073717 a(n) = T(2n+1), where T(n) are the tribonacci numbers A000073.

Original entry on oeis.org

0, 1, 4, 13, 44, 149, 504, 1705, 5768, 19513, 66012, 223317, 755476, 2555757, 8646064, 29249425, 98950096, 334745777, 1132436852, 3831006429, 12960201916, 43844049029, 148323355432, 501774317241, 1697490356184, 5742568741225
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Aug 05 2002

Keywords

Comments

In general, the bisection of a third-order linear recurrence with signature (x,y,z) will result in a third-order recurrence with signature (x^2 + 2*y, 2*z*x - y^2, z^2). - Gary Detlefs, May 29 2024

Crossrefs

Row sums of A216182.

Programs

  • Magma
    [n le 3 select (n-1)^2 else 3*Self(n-1) +Self(n-2) +Self(n-3): n in [1..31]]; // G. C. Greubel, Nov 19 2021
    
  • Mathematica
    CoefficientList[Series[(x+x^2)/(1-3x-x^2-x^3), {x, 0, 30}], x]
    LinearRecurrence[{3,1,1},{0,1,4},30] (* Harvey P. Dale, Sep 07 2015 *)
  • Sage
    def A073717_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x*(1+x)/(1-3*x-x^2-x^3) ).list()
    A073717_list(30) # G. C. Greubel, Nov 19 2021

Formula

a(n) = 3*a(n-1) + a(n-2) + a(n-3), a(0)=0, a(1)=1, a(2)=4.
G.f.: x*(1+x)/(1-3*x-x^2-x^3).
a(n+1) = Sum_{k=0..n} A216182(n,k). - Philippe Deléham, Mar 11 2013
a(n) = A113300(n-1) + A113300(n). - R. J. Mathar, Jul 04 2019

A184883 Number triangle T(n,k) = [k<=n]*Hypergeometric2F1([-k, 2k-2n], [1], 2).

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 9, 13, 1, 1, 13, 41, 25, 1, 1, 17, 85, 129, 41, 1, 1, 21, 145, 377, 321, 61, 1, 1, 25, 221, 833, 1289, 681, 85, 1, 1, 29, 313, 1561, 3649, 3653, 1289, 113, 1, 1, 33, 421, 2625, 8361, 13073, 8989, 2241, 145, 1, 1, 37, 545, 4089, 16641, 36365, 40081, 19825, 3649, 181, 1
Offset: 0

Views

Author

Paul Barry, Jan 24 2011

Keywords

Examples

			Triangle begins
  1;
  1,  1;
  1,  5,   1;
  1,  9,  13,    1;
  1, 13,  41,   25,     1;
  1, 17,  85,  129,    41,     1;
  1, 21, 145,  377,   321,    61,     1;
  1, 25, 221,  833,  1289,   681,    85,     1;
  1, 29, 313, 1561,  3649,  3653,  1289,   113,    1;
  1, 33, 421, 2625,  8361, 13073,  8989,  2241,  145,   1;
  1, 37, 545, 4089, 16641, 36365, 40081, 19825, 3649, 181, 1;
		

Crossrefs

Cf. A099463 (row sums), A114123, A184884 (diagonal sums).

Programs

  • Magma
    T:= func< n,k | (&+[Binomial(k,j)*Binomial(2*(n-k), j)*2^j: j in [0..k]]) >;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 19 2021
    
  • Mathematica
    A184883[n_, k_]:= Hypergeometric2F1[-k, 2*(k-n), 1, 2];
    Table[A184883[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 19 2021 *)
  • Sage
    def A184883(n,k): return simplify( hypergeometric([-k, 2*(k-n)], [1], 2) )
    flatten([[A184883(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Nov 19 2021

Formula

T(n,k) = [k<=n]*Sum_{j=0..k} C(2*n-2*k,j)*C(k,j)*2^j.
T(n, n-k) = A114123(n, k).
Sum_{k=0..n} T(n, k) = A099463(n+1).
Sum_{k=0..floor(n/2)} T(n, k) = A184884(n).
T(n, k) = Hypergeometric2F1([-k, 2*(k-n)], [1], 2). - G. C. Greubel, Nov 19 2021

A099462 Expansion of x/(1 - 4*x^2 - 4*x^3).

Original entry on oeis.org

0, 1, 0, 4, 4, 16, 32, 80, 192, 448, 1088, 2560, 6144, 14592, 34816, 82944, 197632, 471040, 1122304, 2674688, 6373376, 15187968, 36192256, 86245376, 205520896, 489750528, 1167065088, 2781085696, 6627262464, 15792603136, 37633392640
Offset: 0

Views

Author

Paul Barry, Oct 16 2004

Keywords

Comments

Binomial transform is A099463.

Crossrefs

Cf. A099463.

Programs

  • Magma
    [n le 3 select (1+(-1)^n)/2 else 4*(Self(n-2) +Self(n-3)): n in [1..41]]; // G. C. Greubel, Nov 18 2021
    
  • Mathematica
    LinearRecurrence[{0,4,4}, {0,1,0}, 40] (* G. C. Greubel, Nov 18 2021 *)
  • Sage
    def a(n): return sum( 4^k*binomial(k, n-2*k-1) for k in (0..(n-1)//2) )
    [a(n) for n in (0..40)] # G. C. Greubel, Nov 18 2021

Formula

a(n) = 4*a(n-2) + 4*a(n-3).
a(n) = Sum_{k=0..floor((n-1)/2)} binomial(k, n-2*k-1)*4^k.
a(n+1) = Sum_{k=0..floor(n/2)} C((n-k)/2, k)*(1+(-1)^(n-k))*2^(n-k). - Paul Barry, Sep 09 2005

A113301 Sum of odd-indexed terms of tribonacci numbers.

Original entry on oeis.org

0, 1, 5, 18, 62, 211, 715, 2420, 8188, 27701, 93713, 317030, 1072506, 3628263, 12274327, 41523752, 140473848, 475219625, 1607656477, 5438662906, 18398864822, 62242913851, 210566269283, 712340586524, 2409830942708, 8152399683933, 27579370581033, 93300342369742
Offset: 0

Views

Author

Jonathan Vos Post, Oct 24 2005

Keywords

Comments

A000073 is the tribonacci numbers. A113300 is the sum of even-indexed terms of tribonacci numbers. A099463 is the bisection of the tribonacci numbers. A113300(n) + A113301(n) = cumulative sum of tribonacci numbers = A008937(n). Primes in A113300 include a(2) = 5, a(5) = 211, a(9) = 27701, .... A113300 is semiprime for n = 4, 10, 14, ...

Examples

			a(0) = 0 = A000073(1);
a(1) = 0+1 = A000073(1) + A000073(3) = 1;
a(2) = 0+1+4 = A000073(1) + A000073(3) + A000073(5) = 5, prime;
a(3) = 0+1+4+13 = A000073(1) + A000073(3) + A000073(5) + A000073(7) = 18;
a(4) = 0+1+4+13+44 = A000073(1) + A000073(3) + A000073(5) + A000073(7) + A000073(9) = 62 = 2 * 31, semiprime;
a(5) = 0+1+4+13+44+149 = A000073(1) + A000073(3) + A000073(5) + A000073(7) + A000073(9) + A000073(11) = 211, prime.
		

Crossrefs

Programs

  • Magma
    I:=[0,1,5,18]; [n le 4 select I[n] else 4*Self(n-1) - 2*Self(n-2) -Self(n-4): n in [1..41]]; // G. C. Greubel, Nov 20 2021
    
  • Mathematica
    Accumulate[Take[LinearRecurrence[{1,1,1},{0,1,1},40],{1,-1,2}]] (* or *) LinearRecurrence[{4,-2,0,-1},{0,1,5,18},30] (* Harvey P. Dale, Apr 12 2013 *)
  • Sage
    @CachedFunction
    def T(n): # A000073
        if (n<2): return 0
        elif (n==2): return 1
        else: return T(n-1) +T(n-2) +T(n-3)
    def A113301(n): return sum(T(2*j+1) for j in (0..n))
    [A113301(n) for n in (0..40)] # G. C. Greubel, Nov 20 2021

Formula

a(n) = Sum_{j=0..n} A000073(2*j+1).
a(n) + A113300(n) = A008937(n).
a(n) = 4*a(n-1) - 2*a(n-2) - a(n-4), a(0)=0, a(1)=1, a(2)=5, a(3)=18. - Harvey P. Dale, Apr 12 2013
G.f.: x*(1+x) / ((1-x)*(1-3*x-x^2-x^3)). - Colin Barker, May 06 2013

Extensions

More terms from Colin Barker, May 06 2013
Showing 1-8 of 8 results.