cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A085697 a(n) = T(n)^2, where T(n) = A000073(n) is the n-th tribonacci number.

Original entry on oeis.org

0, 0, 1, 1, 4, 16, 49, 169, 576, 1936, 6561, 22201, 75076, 254016, 859329, 2907025, 9834496, 33269824, 112550881, 380757169, 1288092100, 4357584144, 14741602225, 49870482489, 168710633536, 570743986576, 1930813074369, 6531893843049
Offset: 0

Views

Author

Emanuele Munarini, Jul 18 2003

Keywords

Comments

In general, squaring the terms of a third-order linear recurrence with signature (x,y,z) will result in a sixth-order recurrence with signature (x^2 + y, x^2*y + z*x + y^2, x^3*z + 4*x*y*z - y^3 + 2*z^2, x^2*z^2 - x*y^2*z - z^2*y, z^2*y^2 - z^3*x, -z^4). - Gary Detlefs, Jan 10 2023

References

  • R. Schumacher, Explicit formulas for sums involving the squares of the first n Tribonacci numbers, Fib. Q., 58:3 (2020), 194-202.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); [0,0] cat Coefficients(R!( x^2*(1-x-x^2-x^3)/((1-3*x-x^2-x^3)*(1+x+x^2-x^3)) )); // G. C. Greubel, Nov 20 2021
    
  • Mathematica
    LinearRecurrence[{2,3,6,-1,0,-1},{0,0,1,1,4,16},30] (* Harvey P. Dale, Oct 26 2020 *)
  • Maxima
    t[0]:0$  t[1]:0$  t[2]:1$
    t[n]:=t[n-1]+t[n-2]+t[n-3]$
    makelist(t[n]^2,n,0,40); /* Emanuele Munarini, Mar 01 2011 */
    
  • Sage
    @CachedFunction
    def T(n): # A000073
        if (n<2): return 0
        elif (n==2): return 1
        else: return T(n-1) +T(n-2) +T(n-3)
    def A085697(n): return T(n)^2
    [A085697(n) for n in (0..40)] # G. C. Greubel, Nov 20 2021

Formula

G.f.: x^2*( 1-x-x^2-x^3 )/( (1-3*x-x^2-x^3)*(1+x+x^2-x^3) ).
a(n+6) = 2*a(n+5) + 3*a(n+4) + 6*a(n+3) - a(n+2) - a(n).
a(n) = (-A057597(n-2) + 3*A057597(n-1) + 6*A057597(n) + 5*A113300(n-1) - A099463(n-2))/11. - R. J. Mathar, Aug 19 2008

Extensions

Offset corrected to match A000073 by N. J. A. Sloane, Sep 12 2020
Name corrected to match corrected offset by Michael A. Allen, Jun 10 2021

A089068 a(n) = a(n-1)+a(n-2)+a(n-3)+2 with a(0)=0, a(1)=0 and a(2)=1.

Original entry on oeis.org

0, 0, 1, 3, 6, 12, 23, 43, 80, 148, 273, 503, 926, 1704, 3135, 5767, 10608, 19512, 35889, 66011, 121414, 223316, 410743, 755475, 1389536, 2555756, 4700769, 8646063, 15902590, 29249424, 53798079, 98950095, 181997600, 334745776, 615693473
Offset: 0

Views

Author

Roger L. Bagula, Dec 03 2003

Keywords

Comments

The a(n+2) represent the Kn12 and Kn22 sums of the square array of Delannoy numbers A008288. See A180662 for the definition of these knight and other chess sums. - Johannes W. Meijer, Sep 21 2010

Crossrefs

Cf. A000073 (Kn11 & Kn21), A089068 (Kn12 & Kn22), A180668 (Kn13 & Kn23), A180669 (Kn14 & Kn24), A180670 (Kn15 & Kn25). - Johannes W. Meijer, Sep 21 2010

Programs

  • Mathematica
    Join[{a=0,b=0,c=1},Table[d=a+b+c+2;a=b;b=c;c=d,{n,50}]] (* Vladimir Joseph Stephan Orlovsky, Apr 19 2011 *)
    RecurrenceTable[{a[0]==a[1]==0,a[2]==1,a[n]==a[n-1]+a[n-2]+a[n-3]+2}, a[n],{n,40}] (* or *) LinearRecurrence[{2,0,0,-1},{0,0,1,3},40] (* Harvey P. Dale, Sep 19 2011 *)

Formula

a(n) = A008937(n-2)+A008937(n-1). - Johannes W. Meijer, Sep 21 2010
a(n) = A018921(n-5)+A018921(n-4), n>4. - Johannes W. Meijer, Sep 21 2010
a(n) = A000073(n+2)-1. - R. J. Mathar, Sep 22 2010
From Johannes W. Meijer, Sep 22 2010: (Start)
a(n) = a(n-1)+A001590(n+1).
a(n) = Sum_{m=0..n} A040000(m)*A000073(n-m).
a(n+2) = Sum_{k=0..floor(n/2)} A008288(n-k+1,k+1).
G.f. = x^2*(1+x)/((1-x)*(1-x-x^2-x^3)). (End)
a(n) = 2*a(n-1)-a(n-4), a(0)=0, a(1)=0, a(2)=1, a(3)=3. - Bruno Berselli, Sep 23 2010

Extensions

Corrected and information added by Johannes W. Meijer, Sep 22 2010, Oct 22 2010
Definition based on arbitrarily set floating-point precision removed by R. J. Mathar, Sep 30 2010

A099463 Bisection of tribonacci numbers.

Original entry on oeis.org

0, 1, 2, 7, 24, 81, 274, 927, 3136, 10609, 35890, 121415, 410744, 1389537, 4700770, 15902591, 53798080, 181997601, 615693474, 2082876103, 7046319384, 23837527729, 80641778674, 272809183135, 922906855808, 3122171529233
Offset: 0

Views

Author

Paul Barry, Oct 16 2004

Keywords

Comments

Binomial transform of A099462.
From Paul Barry, Feb 07 2006: (Start)
a(n+1) gives row sums of number triangle A114123 or A184883.
Partial sums are A113300. (End)

Crossrefs

Programs

  • Magma
    [n le 3 select (n-1) else 3*Self(n-1) +Self(n-2) +Self(n-3): n in [1..31]]; // G. C. Greubel, Nov 20 2021
    
  • Mathematica
    LinearRecurrence[{3,1,1},{0,1,2},30] (* or *) Join[{0},Mean/@ Partition[ LinearRecurrence[ {1,1,1},{1,1,1},60],2]] (* Harvey P. Dale, Apr 02 2012 *)
  • Sage
    def A184883(n, k): return simplify( hypergeometric([-k, 2*(k-n)], [1], 2) )
    def A099463(n): return sum( A184883(n, k) for k in (0..n) )
    [0]+[A099463(n-1) for n in (1..40)] # G. C. Greubel, Nov 20 2021

Formula

G.f.: x*(1-x)/(1-3*x-x^2-x^3).
a(n) = Sum_{k=0..n} binomial(n, k)*Sum_{j=0..floor((k-1)/2)} binomial(j, k-2*j-1)*4^j.
From Paul Barry, Feb 07 2006: (Start)
a(n) = 3*a(n-1) + a(n-2) + a(n-3).
a(n) = Sum_{k=0..n} Sum_{j=0..n} C(2*k, n-k-j)*C(n-k, j)*2^(n-k-j). (End)
a(n)/a(n-1) tends to 3.38297576..., the square of the tribonacci constant A058265. - Gary W. Adamson, Feb 28 2006
If p[1]=2, p[2]=3, p[i]=4, (i>2), and if A is Hessenberg matrix of order n defined by: A[i,j] = p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n+1) = det A. - Milan Janjic, May 02 2010

A073717 a(n) = T(2n+1), where T(n) are the tribonacci numbers A000073.

Original entry on oeis.org

0, 1, 4, 13, 44, 149, 504, 1705, 5768, 19513, 66012, 223317, 755476, 2555757, 8646064, 29249425, 98950096, 334745777, 1132436852, 3831006429, 12960201916, 43844049029, 148323355432, 501774317241, 1697490356184, 5742568741225
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Aug 05 2002

Keywords

Comments

In general, the bisection of a third-order linear recurrence with signature (x,y,z) will result in a third-order recurrence with signature (x^2 + 2*y, 2*z*x - y^2, z^2). - Gary Detlefs, May 29 2024

Crossrefs

Row sums of A216182.

Programs

  • Magma
    [n le 3 select (n-1)^2 else 3*Self(n-1) +Self(n-2) +Self(n-3): n in [1..31]]; // G. C. Greubel, Nov 19 2021
    
  • Mathematica
    CoefficientList[Series[(x+x^2)/(1-3x-x^2-x^3), {x, 0, 30}], x]
    LinearRecurrence[{3,1,1},{0,1,4},30] (* Harvey P. Dale, Sep 07 2015 *)
  • Sage
    def A073717_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x*(1+x)/(1-3*x-x^2-x^3) ).list()
    A073717_list(30) # G. C. Greubel, Nov 19 2021

Formula

a(n) = 3*a(n-1) + a(n-2) + a(n-3), a(0)=0, a(1)=1, a(2)=4.
G.f.: x*(1+x)/(1-3*x-x^2-x^3).
a(n+1) = Sum_{k=0..n} A216182(n,k). - Philippe Deléham, Mar 11 2013
a(n) = A113300(n-1) + A113300(n). - R. J. Mathar, Jul 04 2019

A154948 Riordan array ((1+x)/(1-x^2)^2, x(1+x)/(1-x)).

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 2, 6, 5, 1, 3, 10, 14, 7, 1, 3, 15, 30, 26, 9, 1, 4, 21, 55, 70, 42, 11, 1, 4, 28, 91, 155, 138, 62, 13, 1, 5, 36, 140, 301, 363, 242, 86, 15, 1, 5, 45, 204, 532, 819, 743, 390, 114, 17, 1, 6, 55, 285, 876, 1652, 1925, 1375, 590, 146, 19, 1
Offset: 0

Views

Author

Paul Barry, Jan 17 2009

Keywords

Comments

Row sums are A113300(n+1). Diagonal sums are A154949.
Product of A154950 and A007318.

Examples

			Triangle begins
  1;
  1,  1;
  2,  3,  1;
  2,  6,  5,  1;
  3, 10, 14,  7,  1;
  3, 15, 30, 26,  9,  1;
  4, 21, 55, 70, 42, 11, 1;
		

Programs

  • Magma
    [ (&+[Binomial(k-1, j)*Binomial(n-j+1, k+1): j in [0..n+1]]): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 18 2020
    
  • Maple
    seq(seq( add(binomial(k-1, j)*binomial(n-j+1, k+1), j=0..n+1), k=0..n), n=0..10); # G. C. Greubel, Feb 18 2020
  • Mathematica
    Table[Binomial[n+1, k+1]*Hypergeometric2F1[-n+k, -k+1, -n-1, -1], {n, 0, 5}, {k, 0, n}]//Flatten (* G. C. Greubel, Feb 18 2020 *)
  • Sage
    [[ sum(binomial(k-1, j)*binomial(n-j+1, k+1) for j in (0..n+1)) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Feb 18 2020

Formula

Number triangle T(n,k) = Sum_{j=0..n+1} C(n+1-j,k+1)*C(k-1,j).
T(n, k) = binomial(n+1,k+1)*2F1(-(n-k), -(k-1); -(n+1); -1). - G. C. Greubel, Feb 18 2020

Extensions

a(45)=0 removed by Georg Fischer, Feb 18 2020

A113301 Sum of odd-indexed terms of tribonacci numbers.

Original entry on oeis.org

0, 1, 5, 18, 62, 211, 715, 2420, 8188, 27701, 93713, 317030, 1072506, 3628263, 12274327, 41523752, 140473848, 475219625, 1607656477, 5438662906, 18398864822, 62242913851, 210566269283, 712340586524, 2409830942708, 8152399683933, 27579370581033, 93300342369742
Offset: 0

Views

Author

Jonathan Vos Post, Oct 24 2005

Keywords

Comments

A000073 is the tribonacci numbers. A113300 is the sum of even-indexed terms of tribonacci numbers. A099463 is the bisection of the tribonacci numbers. A113300(n) + A113301(n) = cumulative sum of tribonacci numbers = A008937(n). Primes in A113300 include a(2) = 5, a(5) = 211, a(9) = 27701, .... A113300 is semiprime for n = 4, 10, 14, ...

Examples

			a(0) = 0 = A000073(1);
a(1) = 0+1 = A000073(1) + A000073(3) = 1;
a(2) = 0+1+4 = A000073(1) + A000073(3) + A000073(5) = 5, prime;
a(3) = 0+1+4+13 = A000073(1) + A000073(3) + A000073(5) + A000073(7) = 18;
a(4) = 0+1+4+13+44 = A000073(1) + A000073(3) + A000073(5) + A000073(7) + A000073(9) = 62 = 2 * 31, semiprime;
a(5) = 0+1+4+13+44+149 = A000073(1) + A000073(3) + A000073(5) + A000073(7) + A000073(9) + A000073(11) = 211, prime.
		

Crossrefs

Programs

  • Magma
    I:=[0,1,5,18]; [n le 4 select I[n] else 4*Self(n-1) - 2*Self(n-2) -Self(n-4): n in [1..41]]; // G. C. Greubel, Nov 20 2021
    
  • Mathematica
    Accumulate[Take[LinearRecurrence[{1,1,1},{0,1,1},40],{1,-1,2}]] (* or *) LinearRecurrence[{4,-2,0,-1},{0,1,5,18},30] (* Harvey P. Dale, Apr 12 2013 *)
  • Sage
    @CachedFunction
    def T(n): # A000073
        if (n<2): return 0
        elif (n==2): return 1
        else: return T(n-1) +T(n-2) +T(n-3)
    def A113301(n): return sum(T(2*j+1) for j in (0..n))
    [A113301(n) for n in (0..40)] # G. C. Greubel, Nov 20 2021

Formula

a(n) = Sum_{j=0..n} A000073(2*j+1).
a(n) + A113300(n) = A008937(n).
a(n) = 4*a(n-1) - 2*a(n-2) - a(n-4), a(0)=0, a(1)=1, a(2)=5, a(3)=18. - Harvey P. Dale, Apr 12 2013
G.f.: x*(1+x) / ((1-x)*(1-3*x-x^2-x^3)). - Colin Barker, May 06 2013

Extensions

More terms from Colin Barker, May 06 2013
Showing 1-6 of 6 results.