cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A184968 Smallest k such that phi(phi(k)) = 2^n, where phi is the Euler totient function.

Original entry on oeis.org

5, 11, 17, 41, 85, 137, 257, 641, 1285, 2329, 4369, 10537, 17477, 35209, 65537, 163841, 297109, 557057, 1114129, 2687017, 4491589, 8978569, 16843009, 42009217, 71304257, 143163649, 286331153, 690563369, 1145390149, 2281701377, 4295098369, 10737647617
Offset: 1

Views

Author

Michel Lagneau, Mar 27 2011

Keywords

Examples

			a(5) = 85 because phi(85) = 64, phi(64) = 2^5.
		

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 1 to 22 do: id:=0:for k from 1 to 10000000 while(id=0)
      do: if phi(phi(k)) =2^n then id:=1:print(k):else fi:od:od:
    # Alternative:
    f:= proc(n) local S,s,r;
      uses numtheory;
      S:= sort(convert(invphi(2^n),list));
      r:= infinity;
      for s in S while s < r do
        r:= min(r, min(invphi(s)))
      od;
      r
    end proc:
    map(f, [$1..50]); # Robert Israel, Mar 22 2017
  • PARI
    a(n) = {my(v = invphi(2^n), m); for(i = 1, #v, m = invphiMin(v[i]); v[i] = max(m, 0)); vecmin(select(x -> x > 0, v)); } \\ Amiram Eldar, Nov 15 2024, using Max Alekseyev's invphi.gp

Extensions

a(23)-a(32) from Donovan Johnson, Jul 28 2011