cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185055 Number of representations of 5^(2n) as a sum a^2 + b^2 + c^2 with 0 < a <= b <= c.

Original entry on oeis.org

0, 0, 2, 14, 76, 388, 1950, 9762, 48824, 244136, 1220698, 6103510, 30517572, 152587884, 762939446, 3814697258, 19073486320, 95367431632, 476837158194, 2384185791006, 11920928955068, 59604644775380, 298023223876942, 1490116119384754, 7450580596923816, 37252902984619128
Offset: 0

Views

Author

Zak Seidov, Mar 02 2012

Keywords

Comments

Corresponding formulas for several first primes:
p=3, a(n)=(3*3^n+2*n+1)/4 (A047926)
p=5, a(n)=(5^n-4*n-1)/8 (A185055)
p=7, a(n)=(7^n-1)/6
p=11, a(n)=(3*11^n+10*n-3)/20
p=13, a(n)=(13^n-4*n-1)/8
p=17, a(n)=(17^n-1)/8
p=19, a(n)=(5*19^n+18*n-5)/36
p=23, a(n)=3*(23^n-1)/22
p=29, a(n)=(29^n-4*n-1)/8
p=31, a(n)=2*(31^n-1)/15
p=37, a(n)=(37^n-4*n-1)/8
p=41, a(n)=(41^n-1)/8
p=43, a(n)=(11*43^n+42*n-11)/84
p=47, a(n)=3*(47^n-1)/23.
General formulas for a(n) depend on p mod 8 as follows:
p = 1 mod 8, a(n)=(p^n-1)/8
p = 3 mod 8, a(n)=((p + 1)*p^n + 4*(p - 1)*n - (p + 1))/(8*(p - 1))
p = 5 mod 8, a(n)=(p^n-4*n-1)/8
p = 7 mod 8, a(n)=((p + 1)*(p^n - 1))/(8*(p - 1)).

Examples

			a(2)=2 because 25^2 = 9^2+12^2+20^2 = 12^2+15^2+16^2.
		

Crossrefs

Formula

a(n) = (5^n-4n-1)/8.
From Chai Wah Wu, Jun 07 2024: (Start)
a(n) = 7*a(n-1) - 11*a(n-2) + 5*a(n-3) for n > 2.
G.f.: -2*x^2/((x - 1)^2*(5*x - 1)). (End)
a(n) = 2 * A014827(n-1) for n >= 2. - Alois P. Heinz, Jun 07 2024