A185055 Number of representations of 5^(2n) as a sum a^2 + b^2 + c^2 with 0 < a <= b <= c.
0, 0, 2, 14, 76, 388, 1950, 9762, 48824, 244136, 1220698, 6103510, 30517572, 152587884, 762939446, 3814697258, 19073486320, 95367431632, 476837158194, 2384185791006, 11920928955068, 59604644775380, 298023223876942, 1490116119384754, 7450580596923816, 37252902984619128
Offset: 0
Examples
a(2)=2 because 25^2 = 9^2+12^2+20^2 = 12^2+15^2+16^2.
Links
- Index entries for linear recurrences with constant coefficients, signature (7,-11,5).
Formula
a(n) = (5^n-4n-1)/8.
From Chai Wah Wu, Jun 07 2024: (Start)
a(n) = 7*a(n-1) - 11*a(n-2) + 5*a(n-3) for n > 2.
G.f.: -2*x^2/((x - 1)^2*(5*x - 1)). (End)
a(n) = 2 * A014827(n-1) for n >= 2. - Alois P. Heinz, Jun 07 2024
Comments