A185083 Partitions of 2*n into parts not congruent to 0, +-2, +-12, +-14, 16 (mod 32).
1, 1, 3, 6, 11, 20, 34, 56, 91, 143, 220, 334, 498, 732, 1064, 1528, 2171, 3058, 4269, 5910, 8124, 11088, 15034, 20264, 27154, 36189, 47988, 63324, 83176, 108780, 141672, 183776, 237499, 305812, 392406, 501856, 639781, 813108, 1030354, 1301928, 1640572
Offset: 0
Keywords
Examples
1 + x + 3*x^2 + 6*x^3 + 11*x^4 + 20*x^5 + 34*x^6 + 56*x^7 + 91*x^8 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
f[x_, y_] := QPochhammer[-x, x*y]*QPochhammer[-y, x*y]*QPochhammer[x*y, x*y]; A185083[n_] := SeriesCoefficient[(1/2)*(f[x^2, x^2]/f[-x, -x] + 1), {x, 0, n}]; Table[A185083[n], {n,0,50}] (* G. C. Greubel, Jun 22 2017 *)
-
PARI
{a(n) = local(A); if( n<0, 0, n = 2*n; A = x * O(x^n); polcoeff( (eta(x^2 + A)^3 / (eta(x + A)^2 * eta(x^4 + A)) + 1) / 2, n))}
Comments