cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185083 Partitions of 2*n into parts not congruent to 0, +-2, +-12, +-14, 16 (mod 32).

Original entry on oeis.org

1, 1, 3, 6, 11, 20, 34, 56, 91, 143, 220, 334, 498, 732, 1064, 1528, 2171, 3058, 4269, 5910, 8124, 11088, 15034, 20264, 27154, 36189, 47988, 63324, 83176, 108780, 141672, 183776, 237499, 305812, 392406, 501856, 639781, 813108, 1030354, 1301928, 1640572
Offset: 0

Views

Author

Michael Somos, Mar 02 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			1 + x + 3*x^2 + 6*x^3 + 11*x^4 + 20*x^5 + 34*x^6 + 56*x^7 + 91*x^8 + ...
		

Crossrefs

Programs

  • Mathematica
    f[x_, y_] := QPochhammer[-x, x*y]*QPochhammer[-y, x*y]*QPochhammer[x*y, x*y]; A185083[n_] := SeriesCoefficient[(1/2)*(f[x^2, x^2]/f[-x, -x] + 1), {x, 0, n}]; Table[A185083[n], {n,0,50}] (* G. C. Greubel, Jun 22 2017 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, n = 2*n; A = x * O(x^n); polcoeff( (eta(x^2 + A)^3 / (eta(x + A)^2 * eta(x^4 + A)) + 1) / 2, n))}

Formula

Expansion of (phi(q^2) / phi(-q) + 1) / 2 in powers of q where phi() is a Ramanujan theta function.
Euler transform of period 16 sequence [ 1, 2, 3, 2, 3, 0, 1, 0, 1, 0, 3, 2, 3, 2, 1, 0, ...].
2 * a(n) = A208850(n) unless n = 0. a(n + 1) = A208851(n). a(n) = A115671(2*n).