A185086 Fouvry-Iwaniec primes: Primes of the form k^2 + p^2 where p is a prime.
5, 13, 29, 41, 53, 61, 73, 89, 109, 113, 137, 149, 157, 173, 193, 229, 233, 269, 281, 293, 313, 317, 349, 353, 373, 389, 397, 409, 433, 449, 461, 509, 521, 557, 569, 593, 601, 613, 617, 653, 673, 701, 733, 761, 773, 797, 809, 853, 857, 877, 929, 937, 941, 953
Offset: 1
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Étienne Fouvry and Henryk Iwaniec, Gaussian primes, Acta Arithmetica, Vol. 79, No. 3 (1997), pp. 249-287.
- Lasse Grimmelt, Vinogradov's Theorem with Fouvry-Iwaniec Primes, arXiv:1809.10008 [math.NT], 2018.
- Art of Problem Solving, Fermat's Two Squares Theorem.
Crossrefs
Programs
-
Haskell
a185086 n = a185086_list !! (n-1) a185086_list = filter (\p -> any ((== 1) . a010052) $ map (p -) $ takeWhile (<= p) a001248_list) a000040_list -- Reinhard Zumkeller, Mar 17 2013
-
Mathematica
nn = 1000; Union[Reap[Do[n = k^2 + p^2; If[n <= nn && PrimeQ[n], Sow[n]], {k, Sqrt[nn]}, {p, Prime[Range[PrimePi[Sqrt[nn]]]]}]][[2, 1]]]
-
PARI
is(n)=forprime(p=2,sqrtint(n),if(issquare(n-p^2),return(isprime(n))));0
-
PARI
list(lim)=my(v=List(),N,t);forprime(p=2,sqrt(lim), N=p^2; for(n=1,sqrt(lim-N), if(ispseudoprime(t=N+n^2), listput(v,t)))); v=vecsort(Vec(v),,8); v
Comments