cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185086 Fouvry-Iwaniec primes: Primes of the form k^2 + p^2 where p is a prime.

Original entry on oeis.org

5, 13, 29, 41, 53, 61, 73, 89, 109, 113, 137, 149, 157, 173, 193, 229, 233, 269, 281, 293, 313, 317, 349, 353, 373, 389, 397, 409, 433, 449, 461, 509, 521, 557, 569, 593, 601, 613, 617, 653, 673, 701, 733, 761, 773, 797, 809, 853, 857, 877, 929, 937, 941, 953
Offset: 1

Views

Author

Keywords

Comments

Sequence is infinite, see Fouvry & Iwaniec.
Its intersection with A028916 is A262340, by the uniqueness part of Fermat's two-squares theorem. - Jonathan Sondow, Oct 05 2015
Named after the French mathematician Étienne Fouvry (b. 1953) and the Polish-American mathematician Henryk Iwaniec (b. 1947). - Amiram Eldar, Jun 20 2021

Crossrefs

Subsequence of A002144 and hence of A002313.
The positive terms of A240130 form a subsequence.

Programs

  • Haskell
    a185086 n = a185086_list !! (n-1)
    a185086_list = filter (\p -> any ((== 1) . a010052) $
                   map (p -) $ takeWhile (<= p) a001248_list) a000040_list
    -- Reinhard Zumkeller, Mar 17 2013
  • Mathematica
    nn = 1000; Union[Reap[Do[n = k^2 + p^2; If[n <= nn && PrimeQ[n], Sow[n]], {k, Sqrt[nn]}, {p, Prime[Range[PrimePi[Sqrt[nn]]]]}]][[2, 1]]]
  • PARI
    is(n)=forprime(p=2,sqrtint(n),if(issquare(n-p^2),return(isprime(n))));0
    
  • PARI
    list(lim)=my(v=List(),N,t);forprime(p=2,sqrt(lim), N=p^2; for(n=1,sqrt(lim-N), if(ispseudoprime(t=N+n^2), listput(v,t)))); v=vecsort(Vec(v),,8); v