A263721 The prime p in the Fouvry-Iwaniec prime k^2 + p^2 (A185086), or the larger of k and p if both are prime.
2, 3, 5, 5, 7, 5, 3, 5, 3, 7, 11, 7, 11, 13, 7, 2, 13, 13, 5, 17, 13, 11, 5, 17, 7, 17, 19, 3, 17, 7, 19, 5, 11, 19, 13, 23, 5, 17, 19, 13, 23, 5, 2, 19, 17, 11, 5, 23, 29, 29, 23, 19, 29, 13, 31, 31, 23, 11, 3, 5, 31, 13, 2, 29, 5, 13, 31, 2, 11, 5, 31, 37, 23, 37, 3, 7, 23, 3, 13, 31, 19, 37, 41, 11
Offset: 1
Keywords
Examples
A185086(2) = 13 = 2^2 + 3^2 and A185086(6) = 61 = 5^2 + 6^2, so a(2) = 3 and a(6) = 5.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Étienne Fouvry and Henryk Iwaniec, Gaussian primes, Acta Arithmetica 79:3 (1997), pp. 249-287.
Programs
-
Mathematica
p = 2; lst = {}; While[p < 100, k = 1; While[k < 101, If[PrimeQ[k^2 + p^2], AppendTo[lst, {k^2 + p^2, If[PrimeQ@ k, Max[k, p], p]}]]; k++]; p = NextPrime@ p]; Transpose[Union@ lst][[2]]
-
PARI
do(lim)=my(v=List(),p2,t); forprime(p=2, sqrtint(lim\=1), p2=p^2; for(k=1, sqrtint(lim-p2), if(isprime(t=p2+k^2), listput(v, [t, if(isprime(k),max(k,p),p)])))); v=vecsort(Set(v),1); apply(u->u[2], v) \\ Charles R Greathouse IV, Aug 21 2017
Formula
a(n)^2 = A185086(n) - k^2 for some integer k > 0.
Comments