cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A094481 Duplicate of A045637.

Original entry on oeis.org

13, 29, 53, 173, 293, 1373, 2213, 4493, 5333, 9413, 10613, 18773, 26573, 27893
Offset: 1

Views

Author

Keywords

A062324 Primes p such that p^2 + 4 is also prime.

Original entry on oeis.org

3, 5, 7, 13, 17, 37, 47, 67, 73, 97, 103, 137, 163, 167, 193, 233, 277, 293, 307, 313, 317, 347, 373, 463, 487, 503, 547, 577, 593, 607, 613, 677, 743, 787, 823, 827, 853, 883, 953, 967, 983, 997, 1087, 1117, 1123, 1237, 1367, 1423, 1447, 1523, 1543, 1613
Offset: 1

Views

Author

Reiner Martin, Jul 12 2001

Keywords

Comments

Equivalent to the definition: largest absolute dimension of Gaussian primes with prime coordinates. As 2 is the only even prime, the only possibility for a Gaussian prime to have prime coordinates is to be of the form +/-2 +/- I*p or +/-p +/-2*I with p^2+4 a prime, i.e., p is a member of this sequence. - Olivier Gérard, Aug 17 2013
When p > 3, p^2 + 2 is never prime. - Zak Seidov, Nov 04 2013
For p > 5 and q = p^2 + 4, the following congruences apply: q == 3 (mod 10) and q == 5 (mod 12). - Joseph Wheat, Feb 28 2025

Examples

			a(1) = 3 because 3^2 + 4 = 13 is prime,
a(4) = 13 because 13^2 + 4 = 173 is prime. - _Zak Seidov_, Nov 04 2013
		

Crossrefs

The corresponding primes p^2+4 are in A045637.
Subsequence of A176983.

Programs

  • Mathematica
    Select[Prime/@Range[300], PrimeQ[ #^2+4]&]
  • PARI
    { n=0; forprime (p=2, 5*10^5, if (isprime(p^2 + 4), write("b062324.txt", n++, " ", p); if (n==1000, break)) ) } \\ Harry J. Smith, Aug 04 2009

Formula

a(n) = sqrt(A045637(n) - 4). - Zak Seidov, Nov 04 2013

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jul 20 2001
Edited by Dean Hickerson, Dec 10 2002

A116886 Primes p that remain prime through at least 2 iterations of the function f(p) = p^2 + 4.

Original entry on oeis.org

3, 17, 103, 137, 277, 313, 677, 743, 1117, 1627, 2003, 2143, 3407, 3677, 4483, 5087, 5903, 7177, 7333, 8087, 8093, 8147, 8537, 8573, 9293, 9473, 10177, 10477, 11173, 13807, 14897, 15107, 16657, 19753, 21563, 22307, 24113, 26113, 26417, 26633
Offset: 1

Views

Author

Giovanni Resta, Feb 27 2006

Keywords

Comments

Numbers p with the property that p, q = p^2 + 4, and r = q^2 + 4 are all prime. - Zak Seidov, Sep 08 2009
a(n) = sqrt(A165218(n) - 4). - Zak Seidov, Sep 08 2009

Examples

			17 is prime, 17^2 + 4 = 293 is prime and 293^2 + 4 = 85853 is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[2*7! ]],PrimeQ[ #^2+4]&&PrimeQ[(#^2+4)^2+4]&] (* Vladimir Joseph Stephan Orlovsky, Feb 26 2010 *)
    fQ[n_]:=AllTrue[Rest[NestList[#^2+4&,n,2]],PrimeQ]; Select[Prime[ Range[ 3000]],fQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Sep 21 2014 *)
  • PARI
    is(n)=my(q);isprime(p) && isprime(q=p^2+4) && isprime(q^2+4) \\ Charles R Greathouse IV, Nov 06 2013

Extensions

Edited by N. J. A. Sloane, Sep 18 2009 at the suggestion of R. J. Mathar

A182475 Primes of the form p^2+10, where p is prime.

Original entry on oeis.org

19, 59, 131, 179, 971, 2819, 3491, 5051, 6899, 9419, 10211, 16139, 22811, 24659, 32051, 32771, 44531, 49739, 51539, 57131, 96731, 134699, 143651, 201611, 237179, 271451, 358811, 361211, 375779, 383171, 398171, 552059, 597539, 654491, 683939, 779699, 954539
Offset: 1

Views

Author

Alex Ratushnyak, May 01 2012

Keywords

Comments

This is also the sequence of prime numbers expressible as p1^2+p2^2+1 where p1 and p2 are also prime - Christian N. K. Anderson, Mar 25 2013

Crossrefs

Cf. A045637 (p^2 + 4 is prime), A079141 (p^2 + 6 is prime), A138355.

Programs

  • Mathematica
    Select[Table[p^2 + 10, {p, Prime[Range[200]]}], PrimeQ] (* T. D. Noe, May 01 2012 *)

A263722 Integers k > 0 such that k^2 + p^2 is composite for all primes p.

Original entry on oeis.org

9, 11, 19, 21, 23, 25, 29, 31, 39, 41, 43, 49, 51, 53, 55, 59, 61, 63, 69, 71, 75, 77, 79, 81, 83, 89, 91, 93, 99, 101, 105, 107, 109, 111, 113, 119, 121, 123, 127, 129, 131, 133, 139, 141, 143, 145, 149, 151, 153, 157, 159, 161, 165, 169, 171, 173, 175, 179, 181, 185, 187, 189, 191, 195, 197, 199
Offset: 1

Views

Author

Keywords

Comments

Conjecture: All terms are odd. An equivalent conjecture in A263977 is that if k > 0 is even, then k^2 + p^2 is prime for some prime p. We have checked this for all k <= 12*10^7.
An odd number k is a term if and only if k^2 + 2^2 is composite, since k^2 + p^2 is even and > 2 (hence composite) for all odd primes p. Thus if the Conjecture is true, then the sequence is simply odd k such that k^2 + 4 is composite. The sequence of odd k, such that k^2 + 4 is prime, is A007591.
The complementary sequence is A263977. Given k in it, the smallest prime p, such that k^2 + p^2 is prime, is in A263726. These numbers k^2 + p^2 form A185086, the Fouvry-Iwaniec primes.

Examples

			9^2 + 2^2 = 85 = 5*17, 11^2 + 2^2 = 125 = 5^3, and 23^2 + 2^2 = 533 = 13*41 are composite, so 9, 11, and 23 are members.
1^2 + 2^2 = 5 and 2^2 + 3^3 = 13 are prime, so 1, 2, and 3 are not members.
		

Crossrefs

A165218 Primes q of the form q=p^2+4 (p=prime) such that r=q^2+4 is also prime.

Original entry on oeis.org

13, 293, 10613, 18773, 76733, 97973, 458333, 552053, 1247693, 2647133, 4012013, 4592453, 11607653, 13520333, 20097293, 25877573, 34845413, 51509333, 53772893, 65399573, 65496653, 66373613, 72880373, 73496333, 86359853, 89737733
Offset: 1

Views

Author

Zak Seidov, Sep 08 2009

Keywords

Comments

Intersection of A062324 and A045637. Except of the first term, 13, all terms == 5 (mod 6) == 5 (mod 12) == 5 (mod 24) == 23 (mod 30)== 53 (mod 120). Values of primes p in A116886.

Examples

			Prime q=13=p^2+4 (p=3) and r=q^2+4=13^2+4=173 (prime).
Prime q=293=p^2+4 (p=17) and r=q^2+4=293^2+4=85853 (prime).
		

Crossrefs

Programs

  • Mathematica
    Reap[For[p = 2, p < 10^4, p = NextPrime[p], If[PrimeQ[q = p^2+4] && PrimeQ[q^2+4], Print[q]; Sow[q]]]][[2, 1]] (* Jean-François Alcover, Nov 07 2013 *)
    Select[Prime[Range[2000]]^2+4,AllTrue[{#,#^2+4},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 13 2018 *)

Formula

a(n) = (A116886(n))^2 + 4.

A263721 The prime p in the Fouvry-Iwaniec prime k^2 + p^2 (A185086), or the larger of k and p if both are prime.

Original entry on oeis.org

2, 3, 5, 5, 7, 5, 3, 5, 3, 7, 11, 7, 11, 13, 7, 2, 13, 13, 5, 17, 13, 11, 5, 17, 7, 17, 19, 3, 17, 7, 19, 5, 11, 19, 13, 23, 5, 17, 19, 13, 23, 5, 2, 19, 17, 11, 5, 23, 29, 29, 23, 19, 29, 13, 31, 31, 23, 11, 3, 5, 31, 13, 2, 29, 5, 13, 31, 2, 11, 5, 31, 37, 23, 37, 3, 7, 23, 3, 13, 31, 19, 37, 41, 11
Offset: 1

Views

Author

Keywords

Comments

The sequence is well-defined by the uniqueness part of Fermat's two-squares theorem.
The sequence is infinite, since Fouvry and Iwaniec proved that A185086 is infinite.

Examples

			A185086(2) = 13 = 2^2 + 3^2 and A185086(6) = 61 = 5^2 + 6^2, so a(2) = 3 and a(6) = 5.
		

Crossrefs

Programs

  • Mathematica
    p = 2; lst = {}; While[p < 100, k = 1; While[k < 101, If[PrimeQ[k^2 + p^2], AppendTo[lst, {k^2 + p^2, If[PrimeQ@ k, Max[k, p], p]}]]; k++]; p = NextPrime@ p]; Transpose[Union@ lst][[2]]
  • PARI
    do(lim)=my(v=List(),p2,t); forprime(p=2, sqrtint(lim\=1), p2=p^2; for(k=1, sqrtint(lim-p2), if(isprime(t=p2+k^2), listput(v, [t, if(isprime(k),max(k,p),p)])))); v=vecsort(Set(v),1); apply(u->u[2], v) \\ Charles R Greathouse IV, Aug 21 2017

Formula

a(n)^2 = A185086(n) - k^2 for some integer k > 0.

A092104 Primes of form p*q + 4, with prime p and q.

Original entry on oeis.org

13, 19, 29, 37, 43, 53, 59, 61, 73, 89, 97, 127, 137, 149, 163, 173, 181, 191, 223, 239, 241, 251, 257, 263, 269, 271, 293, 307, 313, 331, 359, 397, 419, 421, 431, 449, 457, 509, 521, 523, 541, 547, 557, 563, 569, 577, 587, 593, 601, 653, 659, 673, 683, 691
Offset: 1

Views

Author

Zak Seidov, Feb 20 2004

Keywords

Comments

Primes of form p*q + 2, A063638. Primes common in A063638 and A092104, A092105. Primes of form p*p + 4, A045637.

Crossrefs

Programs

  • Mathematica
    With[{upto=700},Select[Times@@#+4&/@Tuples[Prime[Range[PrimePi[upto/2]]], 2], PrimeQ[#]&&#<+upto&]]//Union (* Harvey P. Dale, Jul 23 2016 *)
  • PARI
    list(lim)=my(v=List(),t); forprime(p=3,(lim-4)\3, forprime(q=3,min((lim-4)\p, p), t=p*q+4; if(isprime(t), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Aug 05 2016

A094482 Primes of form 2^j + 137^j.

Original entry on oeis.org

2, 139, 18773, 124097929967680577
Offset: 1

Views

Author

Labos Elemer, Jun 01 2004

Keywords

Comments

The number j must be zero or a power of 2. Checked j being powers of two through 2^20. Thus a(5) > 10^4400000. Primes of this magnitude are rare (about 1 in 10.3 million), so chance of finding one is remote with today's computer algorithms and speeds. - Robert Price, Apr 29 2013

Examples

			j=0: p=1+1=2; j=1: p=2+59=61; j=2: p=4+18769=18773; j=8: p=256+37^8=124097929967680577; the j exponents are powers of 2.
		

Crossrefs

A244637 Primes that are the sum of the squares of distinct primes.

Original entry on oeis.org

13, 29, 53, 83, 173, 179, 199, 227, 293, 347, 367, 373, 419, 439, 463, 467, 487, 491, 541, 563, 569, 587, 607, 613, 617, 641, 653, 659, 709, 727, 733, 751, 809, 823, 827, 829, 853, 857, 877, 881, 919, 953, 971, 977, 991, 997, 1013, 1019, 1021, 1039, 1049
Offset: 1

Views

Author

Michel Marcus, Jul 03 2014

Keywords

Comments

Primes in A048261.
Provide the prime factors of A185077.
A045637 is a subsequence.
There are only 368 primes not in this sequence, the largest being 12601. - Robert Israel, Jul 04 2014

Examples

			13 is in the sequence since it is prime and 13 = 2^2 + 3^2 (2 and 3 are distinct primes).
		

Crossrefs

Programs

  • Mathematica
    nn=10;s={0};Do[p=Prime[n];s=Union[s,s+p^2],{n,nn}];Select[s,(0<#<=Prime[nn]^2)&&PrimeQ[#]&] (* Michel Lagneau, Jul 03 2014 *)
Showing 1-10 of 21 results. Next