cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A116886 Primes p that remain prime through at least 2 iterations of the function f(p) = p^2 + 4.

Original entry on oeis.org

3, 17, 103, 137, 277, 313, 677, 743, 1117, 1627, 2003, 2143, 3407, 3677, 4483, 5087, 5903, 7177, 7333, 8087, 8093, 8147, 8537, 8573, 9293, 9473, 10177, 10477, 11173, 13807, 14897, 15107, 16657, 19753, 21563, 22307, 24113, 26113, 26417, 26633
Offset: 1

Views

Author

Giovanni Resta, Feb 27 2006

Keywords

Comments

Numbers p with the property that p, q = p^2 + 4, and r = q^2 + 4 are all prime. - Zak Seidov, Sep 08 2009
a(n) = sqrt(A165218(n) - 4). - Zak Seidov, Sep 08 2009

Examples

			17 is prime, 17^2 + 4 = 293 is prime and 293^2 + 4 = 85853 is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[2*7! ]],PrimeQ[ #^2+4]&&PrimeQ[(#^2+4)^2+4]&] (* Vladimir Joseph Stephan Orlovsky, Feb 26 2010 *)
    fQ[n_]:=AllTrue[Rest[NestList[#^2+4&,n,2]],PrimeQ]; Select[Prime[ Range[ 3000]],fQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Sep 21 2014 *)
  • PARI
    is(n)=my(q);isprime(p) && isprime(q=p^2+4) && isprime(q^2+4) \\ Charles R Greathouse IV, Nov 06 2013

Extensions

Edited by N. J. A. Sloane, Sep 18 2009 at the suggestion of R. J. Mathar

A231120 Primes q of the form q = p^2 + 4 (p prime) such that r = q^2 + 4 and t = r^2 + 4 are also prime.

Original entry on oeis.org

25877573, 124835933, 277455653, 2210598293, 2970577013, 34314969053, 43115615453, 90247970573, 93738231893, 116836126973, 153183783773, 720880808213, 1818659924933, 2068485397733, 2258777543933, 3449960763653, 3645300477293, 4501767897173, 4670625512573, 5238481845533, 6812794277693
Offset: 1

Views

Author

Zak Seidov, Nov 04 2013

Keywords

Comments

Positions of a(n) in A165218: 16, 29, 33, 74, 78, 105, 130, 333, 520, 547, 572, 716, 740, 820, 832, 865, 975.
The first primes such that t^2+4 is also prime are 93738231893, 2365771484804813, 4185535280578373, 4658429282719973, 7706774555568173, 7711174427503853, 25756066576859093.

Crossrefs

Subsequence of A165218.

Programs

  • PARI
    forprime(p=2,1e7, if(isprime(q=p^2+4) && isprime(r=q^2+4) && isprime(r^2+4), print1(q", "))) \\ Charles R Greathouse IV, Nov 05 2013

A231235 Primes q of the form p^2 + 4 (p prime) such that r = q^2 + 4, s = r^2 + 4 and t = s^2 + 4 are all prime.

Original entry on oeis.org

93738231893, 2365771484804813, 4185535280578373, 4658429282719973, 7706774555568173, 7711174427503853, 25756066576859093, 65522912397466973, 80107252841869013, 105371595617867573, 130831138562692133, 174460360753737533, 201928181545454813, 204300010667474573
Offset: 1

Views

Author

Zak Seidov, Nov 06 2013

Keywords

Comments

The next iteration is impossible: t^2 + 4 is divisible by 13.

Crossrefs

Subsequence of A231120 and A165218.
Cf. A116889.

Programs

  • Mathematica
    extnd[p_]:=NestList[#^2+4&,p,4]; #^2+4&/@Select[Prime[ Range[ 452*10^6]],AllTrue[Rest[extnd[#]],PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 06 2021 *)

Extensions

Definition corrected by Harvey P. Dale, Jun 06 2021
Showing 1-3 of 3 results.