cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185089 A transform of the little Schroeder numbers.

Original entry on oeis.org

1, 1, 2, 3, 7, 14, 35, 81, 208, 517, 1351, 3492, 9261, 24521, 65862, 177247, 481191, 1310338, 3589143, 9862257, 27215012, 75320969, 209147407, 582264200, 1625342649, 4547350865, 12750836298, 35824579355, 100843670951, 284361285238, 803170176715
Offset: 0

Views

Author

Paul Barry, Feb 18 2011

Keywords

Comments

Hankel transform is A060656.

Programs

  • Mathematica
    CoefficientList[Series[(1-x+x^2-Sqrt[1-2*x-5*x^2+6*x^3+x^4])/(4*x^2*(1-x)), {x,0,50}], x] (* G. C. Greubel, Jun 22 2017 *)
  • PARI
    x='x+O('x^50); Vec((1-x+x^2-sqrt(1-2*x-5*x^2+6*x^3+x^4))/(4*x^2*(1-x))) \\ G. C. Greubel, Jun 22 2017

Formula

G.f.: (1-x+x^2-sqrt(1-2x-5x^2+6x^3+x^4))/(4x^2(1-x)).
G.f.: 1/(1-x-x^2/(1-2x^2/(1-x-x^2/(1-2x^2/(1-x-x^2/(1-2x^2/(1-... (continued fraction).
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k,k)*A001003(k).
conjecture: (n+2)*a(n) -3*(n+1)*a(n-1) +3*(2-n)*a(n-2) +(11*n-20)*a(n-3) +(11-5*n)*a(n-4) +(4-n)*a(n-5) =0. - R. J. Mathar, Nov 16 2011 (Formula verified and used for computations. - Fung Lam, Feb 24 2014)