A185100 Dihedral unlabeled Motzkin numbers: number of ways of drawing any number of nonintersecting chords joining n unlabeled points equally spaced on a circle, up to rotations and reflections of the circle.
1, 1, 2, 2, 4, 5, 11, 16, 36, 65, 150, 312, 756, 1743, 4353, 10732, 27489, 70379, 183866, 481952, 1277784, 3402661, 9126689, 24584870, 66567924, 180939737, 493801694, 1352203202, 3715137460, 10237545525, 28291018283, 78384998904, 217715672036, 606103034821, 1691020991782, 4727601528674, 13242641322252, 37162431389051, 104469244613429
Offset: 0
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
- Andrew Howroyd, Chord Configuration Symmetries
Programs
-
Mathematica
a1006[0] = 1; a1006[n_Integer] := a1006[n] = a1006[n - 1] + Sum[a1006[k]* a1006[n - 2 - k], {k, 0, n - 2}]; a142150[n_] := n*(1 + (-1)^n)/4; a2426[n_] := Coefficient[(1 + x + x^2)^n, x, n]; a175954[0] = 1; a175954[n_] := (1/n)*(a1006[n] + a142150[n]*a1006[n/2 - 1] + Sum[EulerPhi[n/d]*a2426[d], {d, Most @Divisors[n]}]); a5773[0] = 1; a5773[n_] := Sum[k/n*Sum[Binomial[n, j]*Binomial[j, 2*j - n - k], {j, 0, n}], {k, 1, n}]; a[0] = 1; a[n_?OddQ] := With[{m = (n-1)/2}, (1/2)*(a175954[2*m + 1] + a5773[m + 1])]; a[n_?EvenQ] := With[{m = n/2}, (1/4)*(2*a175954[2*m] + a5773[m] + a5773[m + 1] + a1006[m - 1])]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Jul 02 2018, after Andrew Howroyd *)
Formula
a(2n) = (1/4) * (2 * A175954(2n) + A005773(n) + A005773(n+1) + A001006(n-1)) for n > 0. - Andrew Howroyd, Apr 01 2017
Comments