A185102 a(n) is the recursion depth of repeatedly factoring n and then the exponents in its prime product factorization, until 1 is reached.
0, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 3, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 3, 3, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 1
Offset: 1
Keywords
Examples
a(156) = a(2^2*3*13) = 1 + max{a(2), a(1)} = 1 + max{1, 0} = 1 + 1 = 2
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Vitalii V. Iudelevich, On The Tree Structure of Natural Numbers, II, arXiv:2210.06055 [math.NT], 2022. See Figure 2 p. 2.
- Wikipedia, Tetration
Crossrefs
Cf. A096309.
Programs
-
Mathematica
f[n_Integer] := FactorInteger[n][[All, 2]]; a[1] = 0; a[n_] := Depth[f[n] //. k_Integer /; k > 1 :> f[k]] - 1; Table[a[n], {n, 1, 105}] (* Jean-François Alcover, Nov 20 2013 *) a = {0}; Do[AppendTo[a, 1 + Max @@ a[[Union[FactorInteger[n][[All, 2]]]]]], {n, 2, 105}]; a (* Ray Chandler, Nov 22 2013 *)
-
PARI
a(n)=if(n<4,n>1,vecmax(apply(a,Set(factor(n)[,2])))+1) \\ Charles R Greathouse IV, Nov 21 2013
Formula
a(1) = 0. a(p1^k1*p2^k2*...*pn^kn) = 1 + max{a(k1), a(k2), ..., a(kn)} with all pi prime and distinct.
a(n) <= lg*(n), where lg*(x) = 0 if x < 2 and lg*(x) = lg*(log_2(x)) otherwise. - Charles R Greathouse IV, Nov 21 2013
Extensions
Corrected (n=32, 36, 64, 72, 96, 100) by Jean-François Alcover, Nov 20 2013
Comments