cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A046951 a(n) is the number of squares dividing n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 3, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 3, 3, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 2, 2, 4, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2
Offset: 1

Views

Author

Simon Colton (simonco(AT)cs.york.ac.uk)

Keywords

Comments

Rediscovered by the HR automatic theory formation program.
a(n) depends only on prime signature of n (cf. A025487, A046523). So a(24) = a(375) since 24 = 2^3*3 and 375 = 3*5^3 both have prime signature (3, 1).
First differences of A013936. Average value tends towards Pi^2/6 = 1.644934... (A013661, A013679). - Henry Bottomley, Aug 16 2001
We have a(n) = A159631(n) for all n < 125, but a(125) = 2 < 3 = A159631(125). - Steven Finch, Apr 22 2009
Number of 2-generated Abelian groups of order n, if n > 1. - Álvar Ibeas, Dec 22 2014 [In other words, number of order-n abelian groups with rank <= 2. Proof: let b(n) be such number. A finite abelian group is the inner direct product of all Sylow-p subgroups, so {b(n)} is multiplicative. Obviously b(p^e) = floor(e/2)+1 (corresponding to the groups C_(p^r) X C_(p^(e-r)) for 0 <= r <= floor(e/2)), hence b(n) = a(n) for all n. - Jianing Song, Nov 05 2022]
Number of ways of writing n = r*s such that r|s. - Eric M. Schmidt, Jan 08 2015
The number of divisors of the square root of the largest square dividing n. - Amiram Eldar, Jul 07 2020
The number of unordered factorizations of n into cubefree powers of primes (1, primes and squares of primes, A166684). - Amiram Eldar, Jun 12 2025

Examples

			a(16) = 3 because the squares 1, 4, and 16 divide 16.
G.f. = x + x^2 + x^3 + 2*x^4 + x^5 + x^6 + x^7 + 2*x^8 + 2*x^9 + x^10 + ...
		

Crossrefs

One more than A071325.
Differs from A096309 for the first time at n=32, where a(32) = 3, while A096309(32) = 2 (and also A185102(32) = 2).
Sum of the k-th powers of the square divisors of n for k=0..10: this sequence (k=0), A035316 (k=1), A351307 (k=2), A351308 (k=3), A351309 (k=4), A351310 (k=5), A351311 (k=6), A351313 (k=7), A351314 (k=8), A351315 (k=9), A351315 (k=10).
Sequences of the form n^k * Sum_{d^2|n} 1/d^k for k = 0..10: this sequence (k=0), A340774 (k=1), A351600 (k=2), A351601 (k=3), A351602 (k=4), A351603 (k=5), A351604 (k=6), A351605 (k=7), A351606 (k=8), A351607 (k=9), A351608 (k=10).
Cf. A082293 (a(n)==2), A082294 (a(n)==3).

Programs

  • Haskell
    a046951 = sum . map a010052 . a027750_row
    -- Reinhard Zumkeller, Dec 16 2013
    
  • Magma
    [#[d: d in Divisors(n)|IsSquare(d)]:n in [1..120]]; // Marius A. Burtea, Jan 21 2020
    
  • Maple
    A046951 := proc(n)
        local a,s;
        a := 1 ;
        for p in ifactors(n)[2] do
            a := a*(1+floor(op(2,p)/2)) ;
        end do:
        a ;
    end proc: # R. J. Mathar, Sep 17 2012
    # Alternatively:
    isbidivisible := (n, d) -> igcd(n, d) = d and igcd(n/d, d) = d:
    a := n -> nops(select(k -> isbidivisible(n, k), [seq(1..n)])): # Peter Luschny, Jun 13 2025
  • Mathematica
    a[n_] := Length[ Select[ Divisors[n], IntegerQ[Sqrt[#]]& ] ]; Table[a[n], {n, 1, 105}] (* Jean-François Alcover, Jun 26 2012 *)
    Table[Length[Intersection[Divisors[n], Range[10]^2]], {n, 100}] (* Alonso del Arte, Dec 10 2012 *)
    a[ n_] := If[ n < 1, 0, Sum[ Mod[ DivisorSigma[ 0, d], 2], {d, Divisors @ n}]]; (* Michael Somos, Jun 13 2014 *)
    a[ n_] := If[ n < 2, Boole[ n == 1], Times @@ (Quotient[ #[[2]], 2] + 1 & /@ FactorInteger @ n)]; (* Michael Somos, Jun 13 2014 *)
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[ x^k^2 / (1 - x^k^2), {k, Sqrt @ n}], {x, 0, n}]]; (* Michael Somos, Jun 13 2014 *)
    f[p_, e_] := 1 + Floor[e/2]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 15 2020 *)
  • PARI
    a(n)=my(f=factor(n));for(i=1,#f[,1],f[i,2]\=2);numdiv(factorback(f)) \\ Charles R Greathouse IV, Dec 11 2012
    
  • PARI
    a(n) = direuler(p=2, n, 1/((1-X^2)*(1-X)))[n]; \\ Michel Marcus, Mar 08 2015
    
  • PARI
    a(n)=factorback(apply(e->e\2+1, factor(n)[,2])) \\ Charles R Greathouse IV, Sep 17 2015
    
  • Python
    from math import prod
    from sympy import factorint
    def A046951(n): return prod((e>>1)+1 for e in factorint(n).values()) # Chai Wah Wu, Aug 04 2024
    
  • Python
    def is_bidivisible(n, d) -> bool: return gcd(n, d) == d and gcd(n//d, d) == d
    def aList(n) -> list[int]: return [k for k in range(1, n+1) if is_bidivisible(n, k)]
    print([len(aList(n)) for n in range(1, 126)])  # Peter Luschny, Jun 13 2025
  • Scheme
    (definec (A046951 n) (if (= 1 n) 1 (* (A008619 (A007814 n)) (A046951 (A064989 n)))))
    (define (A008619 n) (+ 1 (/ (- n (modulo n 2)) 2)))
    ;; Antti Karttunen, Nov 14 2016
    

Formula

a(p^k) = A008619(k) = [k/2] + 1. a(A002110(n)) = 1 for all n. (This is true for any squarefree number, A005117). - Original notes clarified by Antti Karttunen, Nov 14 2016
a(n) = |{(i, j) : i*j = n AND i|j}| = |{(i, j) : i*j^2 = n}|. Also tau(A000188(n)), where tau = A000005.
Multiplicative with p^e --> floor(e/2) + 1, p prime. - Reinhard Zumkeller, May 20 2007
a(A130279(n)) = n and a(m) <> n for m < A130279(n); A008966(n)=0^(a(n) - 1). - Reinhard Zumkeller, May 20 2007
Inverse Moebius transform of characteristic function of squares (A010052). Dirichlet g.f.: zeta(s)*zeta(2s).
G.f.: Sum_{k > 0} x^(k^2)/(1 - x^(k^2)). - Vladeta Jovovic, Dec 13 2002
a(n) = Sum_{k=1..A000005(n)} A010052(A027750(n,k)). - Reinhard Zumkeller, Dec 16 2013
a(n) = Sum_{k = 1..n} ( floor(n/k^2) - floor((n-1)/k^2) ). - Peter Bala, Feb 17 2014
From Antti Karttunen, Nov 14 2016: (Start)
a(1) = 1; for n > 1, a(n) = A008619(A007814(n)) * a(A064989(n)).
a(n) = A278161(A156552(n)). (End)
G.f.: Sum_{k>0}(theta(q^k)-1)/2, where theta(q)=1+2q+2q^4+2q^9+2q^16+... - Mamuka Jibladze, Dec 04 2016
From Antti Karttunen, Nov 12 2017: (Start)
a(n) = A000005(n) - A056595(n).
a(n) = 1 + A071325(n).
a(n) = 1 + A001222(A293515(n)). (End)
L.g.f.: -log(Product_{k>=1} (1 - x^(k^2))^(1/k^2)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, Jul 30 2018
a(n) = Sum_{d|n} A000005(d) * A008836(n/d). - Torlach Rush, Jan 21 2020
a(n) = A000005(sqrt(A008833(n))). - Amiram Eldar, Jul 07 2020
a(n) = Sum_{d divides n} mu(core(d)^2), where core(n) = A007913(n). - Peter Bala, Jan 24 2024

Extensions

Data section filled up to 125 terms and wrong claim deleted from Crossrefs section by Antti Karttunen, Nov 14 2016

A212172 Row n of table represents second signature of n: list of exponents >= 2 in canonical prime factorization of n, in nonincreasing order, or 0 if no such exponent exists.

Original entry on oeis.org

0, 0, 0, 2, 0, 0, 0, 3, 2, 0, 0, 2, 0, 0, 0, 4, 0, 2, 0, 2, 0, 0, 0, 3, 2, 0, 3, 2, 0, 0, 0, 5, 0, 0, 0, 2, 2, 0, 0, 0, 3, 0, 0, 0, 2, 2, 0, 0, 4, 2, 2, 0, 2, 0, 3, 0, 3, 0, 0, 0, 2, 0, 0, 2, 6, 0, 0, 0, 2, 0, 0, 0, 3, 2, 0, 0, 2, 2, 0, 0, 0, 4, 4, 0, 0, 2, 0, 0
Offset: 1

Views

Author

Matthew Vandermast, Jun 03 2012

Keywords

Comments

Length of row n equals A056170(n) if A056170(n) is positive, or 1 if A056170(n) = 0.
The multiset of exponents >=2 in the prime factorization of n completely determines a(n) for over 20 sequences in the database (see crossreferences). It also determines the fractions A034444(n)/A000005(n) and A037445(n)/A000005(n).
For squarefree numbers, this multiset is { } (the empty multiset). The use of 0 in the table to represent each n with no exponents >=2 in its prime factorization accords with the usual OEIS practice of using 0 to represent nonexistent elements when possible. In comments, the second signature of squarefree numbers will be represented as { }.
For each second signature {S}, there exist values of j and k such that, if the second signature of n is {S}, then A085082(n) is congruent to j modulo k. These values are nontrivial unless {S} = { }. Analogous (but not necessarily identical) values of j and k also exist for each second signature with respect to A088873 and A181796.
Each sequence of integers with a given second signature {S} has a positive density, unlike the analogous sequences for prime signatures. The highest of these densities is 6/Pi^2 = 0.607927... for A005117 ({S} = { }).

Examples

			First rows of table read: 0; 0; 0; 2; 0; 0; 0; 3; 2; 0; 0; 2;...
12 = 2^2*3 has positive exponents 2 and 1 in its canonical prime factorization (1s are often left implicit as exponents). Since only exponents that are 2 or greater appear in a number's second signature, 12's second signature is {2}.
30 = 2*3*5 has no exponents greater than 1 in its prime factorization. The multiset of its exponents >= 2 is { } (the empty multiset), represented in the table with a 0.
72 = 2^3*3^2 has positive exponents 3 and 2 in its prime factorization, as does 108 = 2^2*3^3. Rows 72 and 108 both read {3,2}.
		

Crossrefs

A181800 gives first integer of each second signature. Also see A212171, A212173-A212181, A212642-A212644.
Functions determined by exponents >=2 in the prime factorization of n:
Additive: A046660, A056170.
Other: A007424, A051903 (for n > 1), A056626, A066301, A071325, A072411, A091050, A107078, A185102 (for n > 1), A212180.
Sequences that contain all integers of a specific second signature: A005117 (second signature { }), A060687 ({2}), A048109 ({3}).

Programs

  • Magma
    &cat[IsEmpty(e)select [0]else Reverse(Sort(e))where e is[pe[2]:pe in Factorisation(n)|pe[2]gt 1]:n in[1..102]]; // Jason Kimberley, Jun 13 2012
  • Mathematica
    row[n_] := Select[ FactorInteger[n][[All, 2]], # >= 2 &] /. {} -> 0 /. {k__} -> Sequence[k]; Table[row[n], {n, 1, 100}] (* Jean-François Alcover, Apr 16 2013 *)

Formula

For nonsquarefree n, row n is identical to row A057521(n) of table A212171.

A096309 a(1)=1; for n > 1, a(n) is the number of levels in the "stacked" prime number factorization of n (prime number factorization of the exponents if necessary and so on ...).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 3, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 3, 3, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2, 2
Offset: 1

Views

Author

Franz Vrabec, Jun 27 2004

Keywords

Comments

For n > 1: a(n)=1 iff n squarefree.
Sequence A185102 is a (better?) variant, identical except for A185102(1)=0. - M. F. Hasler, Nov 21 2013

Examples

			a(4)=2 because 4=2^2; a(8)=2 because 8=2^3; a(16)=3 because 16=2^(2^2).
a(65536) = a(2^2^2^2) = a(2^^4) = 4 is the first term larger than 3; the index of the first a(n) > 4, n = 2^^5, has 19729 digits. - _M. F. Hasler_, Nov 21 2013
		

Crossrefs

Programs

  • Mathematica
    f[n_Integer] := FactorInteger[n][[All, 2]]; a[n_] := Depth[f[n] //. k_Integer /; k > 1 :> f[k]] - 1; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Nov 20 2013 *)
  • PARI
    A096309=n->if(n>1,vecmax(apply(a,factor(n)[,2])))+1 \\ M. F. Hasler, Nov 21 2013

Extensions

More terms from Jean-François Alcover, Nov 20 2013

A308993 Multiplicative with a(p) = 1 and a(p^e) = p^a(e) for any e > 1 and prime number p.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 1, 4, 1, 3, 1, 2, 1, 1, 1, 2, 5, 1, 3, 2, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 4, 7, 5, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 5, 2, 1, 1, 1, 4, 9, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Rémy Sigrist, Jul 04 2019

Keywords

Comments

To compute a(n): remove every prime number at leaf position in the prime tower factorization of n (the prime tower factorization of a number is defined in A182318).

Examples

			See Links sections.
		

Crossrefs

Programs

  • PARI
    a(n) = my (f=factor(n)); prod (i=1, #f~, f[i,1]^if (f[i,2]==1, 0, a(f[i,2])))

Formula

a(n) = 1 iff n is squarefree.
a^k(n) = 1 for any k >= A185102(n) (where a^k denotes the k-th iterate of a).
a(n)^2 <= n with equality iff n is the square of some cubefree number (n = A004709(k)^2 for some k > 0).

A365092 Write out the canonical factorization of n and factorize the exponents in the factorization, the exponents in the factorizations of the exponents, ... until there are only prime numbers left. Replace each p in the factorization by (p-1)+1 and factorize each p-1 by the same process if p-1 > 1. Continue this process until there are only 1s left. a(n) is the number of 1s used.

Original entry on oeis.org

0, 2, 3, 4, 5, 5, 6, 5, 5, 7, 8, 7, 8, 8, 8, 6, 7, 7, 8, 9, 9, 10, 11, 8, 7, 10, 6, 10, 11, 10, 11, 7, 11, 9, 11, 9, 10, 10, 11, 10, 11, 11, 12, 12, 10, 13, 14, 9, 8, 9, 10, 12, 13, 8, 13, 11, 11, 13, 14, 12, 13, 13, 11, 7, 13, 13, 14, 11, 14, 13, 14, 10, 11, 12, 10, 12
Offset: 1

Views

Author

Jianing Song, Aug 21 2023

Keywords

Comments

By definition a(2^n) = a(2) + a(n) = 2 + a(n) for all n, so every number occurs in this sequence.
Conjecture: for k >= 2, the maximum n such that a(n) = k is n = A001144(k). n = A365093(k) is the minimum such n.

Examples

			For n = 47029248, we have n = 2^10*3^8*7 = 2^(2*5)*3^(2^3)*7 = (1+1)^((1+1)*(4+1))*(2+1)^((1+1)^(2+1))*(6+1) = (1+1)^((1+1)*(2^2+1))*(2+1)^((1+1)^(2+1))*(2*3+1) = (1+1)^((1+1)*((1+1)^(1+1)+1))*(1+1+1)^((1+1)^(1+1+1))*((1+1)*(2+1)+1) = (1+1)^((1+1)*((1+1)^(1+1)+1))*(1+1+1)^((1+1)^(1+1+1))*((1+1)*(1+1+1)+1). The total number of 1s used is 23, so a(47029248) = 23.
a(1) = 0 since the prime factorization of 1 is empty.
a(2) = 2 since 2 = 1+1.
a(3) = 3 since 3 = 1+1+1.
a(4) = 4 since 4 = (1+1)^(1+1).
a(5) = 5 since 5 = (1+1)^(1+1)+1.
a(6) = 5 since 6 = (1+1)*(1+1+1).
a(7) = 6 since 7 = (1+1)*(1+1+1)+1.
a(8) = 5 since 8 = (1+1)^(1+1+1).
a(9) = 5 since 9 = (1+1+1)^(1+1).
a(10) = 7 since 10 = (1+1)*((1+1)^(1+1)+1).
		

Crossrefs

Programs

  • PARI
    a(n) = if(n==2, 2, if(isprime(n), a(n-1)+1, my(f=factor(n)); sum(i=1, #f~, a(f[i,1])+a(f[i,2]))))
    
  • Python
    from functools import lru_cache
    from sympy import factorint, isprime
    @lru_cache(maxsize=None)
    def A365092(n): return n-1<<1 if n <= 2 else (sum(A365092(p)+A365092(e) for p, e in factorint(n).items()) if not isprime(n) else A365092(n-1)+1) # Chai Wah Wu, Aug 23 2023

Formula

a(2) = 2, a(p) = a(p-1)+1 for primes p > 2; a(p^e) = a(p) + a(e); a(m*n) = a(m) + a(n) for gcd(m,n) = 1.

A309002 Multiplicative with a(p) = p^2 and a(p^e) = p^a(e) for any e > 1 and prime number p.

Original entry on oeis.org

1, 4, 9, 16, 25, 36, 49, 512, 81, 100, 121, 144, 169, 196, 225, 65536, 289, 324, 361, 400, 441, 484, 529, 4608, 625, 676, 19683, 784, 841, 900, 961, 33554432, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 12800, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 589824
Offset: 1

Views

Author

Rémy Sigrist, Jul 05 2019

Keywords

Comments

To compute a(n): square every prime number at leaf position in the prime tower factorization of n (the prime tower factorization of a number is defined in A182318).
For any n > 0, a(n) is the least k such that A308993(k) = n.

Examples

			See Links section.
		

Crossrefs

Programs

  • PARI
    a(n) = my (f=factor(n)); prod (i=1, #f~, f[i, 1]^if (f[i, 2]==1, 2, a(f[i, 2])))

Formula

A308993(a(n)) = n.
A185102(a(n)) = 1 + A185102(n) for any n > 1.
a(n) >= n^2 with equality iff n is cubefree (A004709).
Showing 1-6 of 6 results.