A185113 Number of dissections of a convex (3n+3)-sided polygon into n pentagons and one triangle (up to equivalence).
1, 3, 18, 130, 1020, 8379, 70840, 610740, 5340060, 47187580, 420412278, 3770221338, 33991902308, 307826695050, 2798052616800, 25514463687720, 233296537299228, 2138295980859588, 19639886707062280, 180724535020583400, 1665767679910654320, 15376467276901980315
Offset: 0
Keywords
Examples
For n=0, there is just one triangle, so that a(0)=1. For n=1, one can dissect an hexagon in 6 ways into a pentagon and a triangle. In this case, the equivalence relation just relates every such dissection to its half rotated image, so that a(1)=3.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Maple
f := RootOf(81*x - 8 - (75*x - 8)*Z + (288*x^2 - 30*x)*_Z^2 + (256*x^3 - 27*x^2)*_Z^4): seq(coeff(series(f, x, 20), x, n), n = 0..19); # _Peter Luschny, Apr 06 2023
-
Mathematica
Table[Binomial[4*n + 1, n]*(n + 2)/(3*n + 2), {n, 0, 50}] (* G. C. Greubel, Jun 23 2017 *)
-
PARI
for(n=0,25, print1(binomial(4*n+1,n)*(n+2)/(3*n+2), ", ")) \\ G. C. Greubel, Jun 23 2017
-
Sage
def A185113(n): return binomial(4*n+1, n) * (n+2) / (3*n+2)
Formula
a(n) = binomial(4*n+1,n-1)*(n+2)/n = binomial(4*n+1,n)*(n+2)/(3*n+2).
a(n) = binomial(n+2,2) * A000260(n). - F. Chapoton Feb 22 2024
Comments