cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185130 Irregular triangle E(n,g) counting not necessarily connected 3-regular simple graphs on 2n vertices with girth exactly g.

Original entry on oeis.org

1, 1, 1, 4, 2, 15, 5, 1, 71, 21, 2, 428, 103, 8, 1, 3406, 752, 48, 1, 34270, 7385, 450, 5, 418621, 91939, 5752, 32, 5937051, 1345933, 90555, 385, 94782437, 22170664, 1612917, 7573, 1, 1670327647, 401399440, 31297424, 181224, 3, 32090011476, 7887389438
Offset: 2

Views

Author

Jason Kimberley, Dec 26 2012

Keywords

Comments

The first column is for girth exactly 3. The column for girth exactly g begins when 2n reaches A000066(g).

Examples

			1;
1, 1;
4, 2;
15, 5, 1;
71, 21, 2;
428, 103, 8, 1;
3406, 752, 48, 1;
34270, 7385, 450, 5;
418621, 91939, 5752, 32;
5937051, 1345933, 90555, 385;
94782437, 22170664, 1612917, 7573, 1;
1670327647, 401399440, 31297424, 181224, 3;
32090011476, 7887389438, 652159986, 4624481, 21;
666351752261, 166897766824, 14499787794, 122089999, 545, 1;
14859579573845, 3781593764772, 342646826428, 3328899592, 30368, 0;
		

Crossrefs

Initial columns of this triangle: A185133 (g=3), A185134 (g=4), A185135 (g=5), A185136 (g=6).

Formula

The n-th row is the sequence of differences of the n-th row of A185330:
E(n,g) = A185330(n,g) - A185330(n,g+1), once we have appended 0 to each row of A185330.
Hence the sum of the n-th row is A185330(n,3) = A005638(n).