A185152 Expansion of (q/2) * phi(q)^3 (d/dq) phi(q) in powers of q.
1, 6, 12, 12, 30, 72, 56, 24, 117, 180, 132, 144, 182, 336, 360, 48, 306, 702, 380, 360, 672, 792, 552, 288, 775, 1092, 1080, 672, 870, 2160, 992, 96, 1584, 1836, 1680, 1404, 1406, 2280, 2184, 720, 1722, 4032, 1892, 1584, 3510, 3312, 2256, 576, 2793, 4650
Offset: 1
Examples
G.f. = x + 6*x^2 + 12*x^3 + 28*x^4 + 30*x^5 + 72*x^6 + 56*x^7 + 24*x^8 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Michael Somos, Introduction to Ramanujan theta functions.
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
Crossrefs
Programs
-
Mathematica
a[ n_] := If[ n == 0, 0, n Sum[ d Sign@Mod[d, 4], {d, Divisors@n}]]; (* Michael Somos, Jun 20 2015 *) a[ n_] := Sign[n] With[ {f = Series[ EllipticTheta[ 3, 0, q], {q, 0, Abs@n + 1}]}, SeriesCoefficient[ (q/2) f^3 D[f, q], Abs@n]]; (* Michael Somos, Jun 20 2015 *) a[ n_] := Sign[n] With[ {f = Series[ EllipticTheta[ 3, x, q], {q, 0, Abs@n + 1}]}, SeriesCoefficient[ (-1/8) f^3 D[f, x, x] /. x -> 0, Abs@n]]; (* Michael Somos, Jun 20 2015 *)
-
PARI
{a(n) = if( n==0, 0, n * sumdiv( n, d, if( d%4, d)))};
Formula
Expansion of (-1/8) * theta_3(0,q)^3 * theta_3(0,q)'' in powers of nome q.
Expansion of (-1/24) * q * (d/dq) (P(q) - 4 * P(q^4)) where P() is a Ramanujan Eisenstein series.
Expansion of (1/8) * (E(k^2) - (1-k^2) * K(k^2)) * K(k^2)^3 / (Pi/2)^4 in powers of nome q.
Multiplicative with a(2^e) = 3 * 2^e if e>0, a(p^e) = p^e * (p^(e+1) - 1) / (p - 1) otherwise.
G.f.: Sum_{k>0} k^2 * x^k / (1 + (-x)^k)^2.
G.f.: Sum_{k>0} k^2 * x^k / (1 - x^k)^2 * (mod(k, 4) > 0).
a(n) = n * Sum of divisors of n that are not divisible by 4 = n * A046897(n).
From Amiram Eldar, Sep 12 2023: (Start)
Dirichlet g.f.: (1 - 1/2^(2*s-4)) * zeta(s-2) * zeta(s-1).
Sum_{k=1..n} a(k) ~ c * n^3, where c = Pi^2/24 = 0.41123... (A222171) . (End)
Comments