cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185152 Expansion of (q/2) * phi(q)^3 (d/dq) phi(q) in powers of q.

Original entry on oeis.org

1, 6, 12, 12, 30, 72, 56, 24, 117, 180, 132, 144, 182, 336, 360, 48, 306, 702, 380, 360, 672, 792, 552, 288, 775, 1092, 1080, 672, 870, 2160, 992, 96, 1584, 1836, 1680, 1404, 1406, 2280, 2184, 720, 1722, 4032, 1892, 1584, 3510, 3312, 2256, 576, 2793, 4650
Offset: 1

Views

Author

Michael Somos, Jan 23 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Ramanujan's Eisenstein series: P(q) (see A006352), Q(q) (A004009), R(q) (A013973).

Examples

			G.f. = x + 6*x^2 + 12*x^3 + 28*x^4 + 30*x^5 + 72*x^6 + 56*x^7 + 24*x^8 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n == 0, 0, n Sum[ d Sign@Mod[d, 4], {d, Divisors@n}]]; (* Michael Somos, Jun 20 2015 *)
    a[ n_] := Sign[n] With[ {f = Series[ EllipticTheta[ 3, 0, q], {q, 0, Abs@n + 1}]}, SeriesCoefficient[ (q/2) f^3 D[f, q], Abs@n]]; (* Michael Somos, Jun 20 2015 *)
    a[ n_] := Sign[n] With[ {f = Series[ EllipticTheta[ 3, x, q], {q, 0, Abs@n + 1}]}, SeriesCoefficient[ (-1/8) f^3 D[f, x, x] /. x -> 0, Abs@n]]; (* Michael Somos, Jun 20 2015 *)
  • PARI
    {a(n) = if( n==0, 0, n * sumdiv( n, d, if( d%4, d)))};

Formula

Expansion of (-1/8) * theta_3(0,q)^3 * theta_3(0,q)'' in powers of nome q.
Expansion of (-1/24) * q * (d/dq) (P(q) - 4 * P(q^4)) where P() is a Ramanujan Eisenstein series.
Expansion of (1/8) * (E(k^2) - (1-k^2) * K(k^2)) * K(k^2)^3 / (Pi/2)^4 in powers of nome q.
Multiplicative with a(2^e) = 3 * 2^e if e>0, a(p^e) = p^e * (p^(e+1) - 1) / (p - 1) otherwise.
G.f.: Sum_{k>0} k^2 * x^k / (1 + (-x)^k)^2.
G.f.: Sum_{k>0} k^2 * x^k / (1 - x^k)^2 * (mod(k, 4) > 0).
a(n) = n * Sum of divisors of n that are not divisible by 4 = n * A046897(n).
a(n) = - a(-n). for all n in Z. Convolution of A000118 and A186690.
From Amiram Eldar, Sep 12 2023: (Start)
Dirichlet g.f.: (1 - 1/2^(2*s-4)) * zeta(s-2) * zeta(s-1).
Sum_{k=1..n} a(k) ~ c * n^3, where c = Pi^2/24 = 0.41123... (A222171) . (End)