cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A326125 Expansion of Sum_{k>=1} k^2 * x^k / (1 + x^k)^2.

Original entry on oeis.org

1, 2, 12, 4, 30, 24, 56, 8, 117, 60, 132, 48, 182, 112, 360, 16, 306, 234, 380, 120, 672, 264, 552, 96, 775, 364, 1080, 224, 870, 720, 992, 32, 1584, 612, 1680, 468, 1406, 760, 2184, 240, 1722, 1344, 1892, 528, 3510, 1104, 2256, 192, 2793, 1550, 3672, 728, 2862, 2160
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 10 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 54; CoefficientList[Series[Sum[k^2 x^k/(1 + x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Table[n Sum[(-1)^(n/d + 1) d, {d, Divisors[n]}], {n, 1, 54}]
    f[p_, e_] := p^e*(p^(e+1)-1)/(p-1); f[2, e_] := 2^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 05 2022 *)
  • PARI
    a(n)={n*sumdiv(n, d, (-1)^(n/d+1)*d)} \\ Andrew Howroyd, Sep 10 2019

Formula

G.f.: Sum_{k>=1} (-1)^(k + 1) * k * x^k * (1 + x^k) / (1 - x^k)^3.
a(n) = n * Sum_{d|n} (-1)^(n/d + 1) * d.
a(n) = n * A000593(n).
From Amiram Eldar, Dec 05 2022: (Start)
Multiplicative with a(2^e) = 2^e, and a(p^e) = p^e*(p^(e+1)-1)/(p-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^3, where c = Pi^2/36 = 0.2741556... (A353908). (End)
Dirichlet g.f.: zeta(s-1)*zeta(s-2)*(1-2^(2-s)). - Amiram Eldar, Jan 07 2023

A326238 Expansion of Sum_{k>=1} k * x^k * (1 - x^k) / (1 + x^k)^3.

Original entry on oeis.org

1, -2, 12, -20, 30, -24, 56, -104, 117, -60, 132, -240, 182, -112, 360, -464, 306, -234, 380, -600, 672, -264, 552, -1248, 775, -364, 1080, -1120, 870, -720, 992, -1952, 1584, -612, 1680, -2340, 1406, -760, 2184, -3120, 1722, -1344, 1892, -2640, 3510, -1104, 2256
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 10 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 47; CoefficientList[Series[Sum[k x^k (1 - x^k)/(1 + x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Table[n Sum[(-1)^(d + 1) d, {d, Divisors[n]}], {n, 1, 47}]
    f[p_, e_] := p^e*(p^(e+1)-1)/(p-1); f[2, e_] := 2^e*(3-2^(e+1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 05 2022 *)
  • PARI
    a(n)={n*sumdiv(n, d, (-1)^(d + 1) * d)} \\ Andrew Howroyd, Sep 10 2019

Formula

G.f.: Sum_{k>=1} (-1)^(k + 1) * k^2 * x^k / (1 - x^k)^2.
a(n) = n * Sum_{d|n} (-1)^(d + 1) * d.
a(n) = n * A002129(n).
Multiplicative with a(2^e) = 2^e*(3-2^(e+1)), and a(p^e) = p^e*(p^(e+1)-1)/(p-1) if p > 2. - Amiram Eldar, Dec 05 2022
Dirichlet g.f.: zeta(s-1)*zeta(s-2)*(1-2^(3-s)). - Amiram Eldar, Jan 07 2023

A374535 Expansion of (x/(8 * (1-x))) * d/dx(theta_3(x)^4).

Original entry on oeis.org

0, 1, 7, 19, 31, 61, 133, 189, 213, 330, 510, 642, 786, 968, 1304, 1664, 1712, 2018, 2720, 3100, 3460, 4132, 4924, 5476, 5764, 6539, 7631, 8711, 9383, 10253, 12413, 13405, 13501, 15085, 16921, 18601, 20005, 21411, 23691, 25875, 26595, 28317, 32349, 34241, 35825, 39335, 42647, 44903
Offset: 0

Views

Author

Seiichi Manyama, Jul 11 2024

Keywords

Crossrefs

Partial sums of A185152.

Programs

  • PARI
    my(N=50, x='x+O('x^N)); concat(0, Vec(sum(k=1, N, k^2*x^k/(1+(-x)^k)^2)/(1-x)))

Formula

a(n) = 1/8 * Sum_{i,j,k,l in Z and i^2 + j^2 + k^2 + l^2 <= n} i^2 + j^2 + k^2 + l^2.
G.f.: (1/(1-x)) * Sum_{k>=1} k^2 * x^k / (1+(-x)^k)^2.
Showing 1-3 of 3 results.