cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185157 G.f. A(x) = sum(n>0, a(n)*x^n/(2*n-1)!) is the inverse function to x*Bernoulli(x).

Original entry on oeis.org

1, 3, 50, 2100, 166824, 21538440, 4115105280, 1091804313600, 384202115256960, 173201547619900800, 97349279409046828800, 66747386996603337024000, 54838533307770850530816000, 53185913922332495626882560000
Offset: 1

Views

Author

Vladimir Kruchinin, Jan 23 2012

Keywords

Comments

r(n)=sum(A191578(n,k)*k!/(n!*(n-k)!)*a(k)/(2*k-1)!,k,1,n)=0, n>1. r(1)=1.
The central column of the Worpitzky triangle, a(n) = A028246(2n, n). Peter Luschny, Jul 17 2012

Crossrefs

Programs

  • Mathematica
    a[n_] := (n-1)!*StirlingS2[2*n-1, n]; Table[a[n], {n, 1, 14}] (* Jean-François Alcover, Feb 21 2013, from 1st formula *)
  • Maxima
    a(n)=(n-1)!*stirling2(2*n-1,n);
    
  • Sage
    def A185157(n) :
        return (1/n)*add((-1)^(n-i)*binomial(n,i)*i^(2*n-1) for i in (0..n))
    [A185157(n) for n in (1..14)] # Peter Luschny, Jul 17 2012

Formula

a(n) = (n-1)!*stirling2(2*n-1,n).
a(n) = (1/n)*sum{i=0..n}(-1)^(n-i)*binomial(n,i)*i^(2*n-1) - Peter Luschny, Jul 17 2012
O.g.f.: Sum_{n>=1} n^(2*n-2)*x^n/(1 + n^2*x)^n = Sum_{n>=1} a(n)*x^n. - Paul D. Hanna, Jan 06 2018