A185157 G.f. A(x) = sum(n>0, a(n)*x^n/(2*n-1)!) is the inverse function to x*Bernoulli(x).
1, 3, 50, 2100, 166824, 21538440, 4115105280, 1091804313600, 384202115256960, 173201547619900800, 97349279409046828800, 66747386996603337024000, 54838533307770850530816000, 53185913922332495626882560000
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..215
- Vladimir Kruchinin, The method for obtaining expressions for coefficients of reverse generating functions, arXiv:1211.3244 [math.CO], 2012.
Programs
-
Mathematica
a[n_] := (n-1)!*StirlingS2[2*n-1, n]; Table[a[n], {n, 1, 14}] (* Jean-François Alcover, Feb 21 2013, from 1st formula *)
-
Maxima
a(n)=(n-1)!*stirling2(2*n-1,n);
-
Sage
def A185157(n) : return (1/n)*add((-1)^(n-i)*binomial(n,i)*i^(2*n-1) for i in (0..n)) [A185157(n) for n in (1..14)] # Peter Luschny, Jul 17 2012
Formula
a(n) = (n-1)!*stirling2(2*n-1,n).
a(n) = (1/n)*sum{i=0..n}(-1)^(n-i)*binomial(n,i)*i^(2*n-1) - Peter Luschny, Jul 17 2012
O.g.f.: Sum_{n>=1} n^(2*n-2)*x^n/(1 + n^2*x)^n = Sum_{n>=1} a(n)*x^n. - Paul D. Hanna, Jan 06 2018
Comments