cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185158 Triangular array read by rows: T(n,k) (n>=1, 0<=k<=n-1, except 0<=k<=1 when n=1) = coefficient of x^k in expansion of (1/n)*Sum_{d|n} (mobius(d)*(1+x^d)^(n/d)).

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 2, 1, 0, 1, 2, 3, 2, 1, 0, 1, 3, 5, 5, 3, 1, 0, 1, 3, 7, 8, 7, 3, 1, 0, 1, 4, 9, 14, 14, 9, 4, 1, 0, 1, 4, 12, 20, 25, 20, 12, 4, 1, 0, 1, 5, 15, 30, 42, 42, 30, 15, 5, 1, 0, 1, 5, 18, 40, 66, 75, 66, 40, 18, 5, 1, 0, 1, 6, 22, 55, 99, 132, 132, 99, 55, 22, 6, 1, 0, 1, 6, 26, 70, 143, 212, 245, 212, 143, 70, 26, 6, 1
Offset: 1

Views

Author

N. J. A. Sloane, Jan 23 2012

Keywords

Comments

T(n,k) is the number of binary Lyndon words of length n containing k ones. - Joerg Arndt, Oct 21 2012

Examples

			The first few polynomials are:
1+x
x
x+x^2
x+x^2+x^3
x+2*x^2+2*x^3+x^4
x+2*x^2+3*x^3+2*x^4+x^5
x+3*x^2+5*x^3+5*x^4+3*x^5+x^6
...
The triangle begins:
[ 1]  1, 1,
[ 2]  0, 1,
[ 3]  0, 1, 1,
[ 4]  0, 1, 1, 1,
[ 5]  0, 1, 2, 2, 1,
[ 6]  0, 1, 2, 3, 2, 1,
[ 7]  0, 1, 3, 5, 5, 3, 1,
[ 8]  0, 1, 3, 7, 8, 7, 3, 1,
[ 9]  0, 1, 4, 9, 14, 14, 9, 4, 1,
[10]  0, 1, 4, 12, 20, 25, 20, 12, 4, 1,
[11]  0, 1, 5, 15, 30, 42, 42, 30, 15, 5, 1,
[12]  0, 1, 5, 18, 40, 66, 75, 66, 40, 18, 5, 1,
[13]  0, 1, 6, 22, 55, 99, 132, 132, 99, 55, 22, 6, 1,
[14]  0, 1, 6, 26, 70, 143, 212, 245, 212, 143, 70, 26, 6, 1
...
		

Crossrefs

Two other versions of this triangle are in A051168 and A092964.

Programs

  • Maple
    with(numtheory);
    W:=r->expand((1/r)*add(mobius(d)*(1+x^d)^(r/d), d in divisors(r)));
    for n from 1 to 14 do
    lprint(W(n));
    od:
    for n from 1 to 14 do
    lprint(seriestolist(series(W(n),x,50)));
    od:
  • Mathematica
    T[n_, k_] := DivisorSum[GCD[n, k], MoebiusMu[#] Binomial[n/#, k/#]&]/n; Table[T[n, k], {n, 1, 14}, {k, 0, Max[1, n-1]}] // Flatten (* Jean-François Alcover, Dec 02 2015 *)
  • PARI
    p(n) = if(n<=0, n==0, 'a0 + 1/n * sumdiv(n, d, moebius(d)*(1+x^d)^(n/d) ));
    /* print triangle: */
    for (n=1,17, v=Vec( polrecip(Pol(p(n),x)) ); v[1]-='a0; print(v) );
    /* Joerg Arndt, Oct 21 2012 */
    
  • PARI
    T(n,k) = 1/n * sumdiv(gcd(n,k), d, moebius(d) * binomial(n/d,k/d) );
    /* print triangle: */
    { for (n=1, 17, for (k=0, max(1,n-1), print1(T(n,k),", "); ); print(); ); }
    /* Joerg Arndt, Oct 21 2012 */

Formula

T(n,k) = 1/n * sum( d divides gcd(n,k), mu(d) * C(n/d,k/d) ). - Joerg Arndt, Oct 21 2012
The prime rows are given by (1+x)^p/p, rounding non-integer coefficients to 0, e.g., (1+x)^2/2 = .5 + x + .5 x^2 gives (0,1,0), row 2 below. - Tom Copeland, Oct 21 2014