cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A303602 a(n) = Sum_{k = 0..n} k*binomial(2*n+1, k).

Original entry on oeis.org

0, 3, 25, 154, 837, 4246, 20618, 97140, 447661, 2028478, 9070110, 40122028, 175913250, 765561564, 3310623412, 14238676712, 60949133949, 259809601870, 1103420316566, 4670886541308, 19714134528598, 82985455688276, 348481959315660, 1460179866076504, 6106070639175122
Offset: 0

Views

Author

Bruno Berselli, May 09 2018

Keywords

Comments

Second bisection of A185251; the first bisection is A002699.
The terms are not congruent to 5 (mod 6).

Crossrefs

Programs

  • Maple
    seq(add(k*binomial(2*n+1,k),k=0..n),n=0..24); # Paolo P. Lava, May 10 2018
  • Mathematica
    Table[Sum[k Binomial[2 n + 1, k], {k, 0, n}], {n, 0, 30}]
    CoefficientList[Series[(1 + 4*x - Sqrt[1 - 4*x]) / (2*(1 - 4*x)^2), {x, 0, 25}], x] (* Vaclav Kotesovec, May 10 2018 *)
  • PARI
    a(n)=(2*n+1)*(4^n-binomial(2*n,n))/2 \\ Charles R Greathouse IV, Oct 23 2023
  • Sage
    [(2*n+1)*(4^n-binomial(2*n,n))/2 for n in (0..30)]
    

Formula

E.g.f.: ((1 + 8*x)*exp(2*x) - (1 + 4*x)*I_0(2*x) - 4*x*I_1(2*x))*exp(2*x)/2, where I_m(.) is the modified Bessel function of the first kind.
From Vaclav Kotesovec, May 10 2018: (Start)
G.f.: (1 + 4*x - sqrt(1 - 4*x)) / (2*(1 - 4*x)^2).
D-finite with recurrence: n*(2*n-1)*a(n) = 2*(2*n+1)*(4*n-3)*a(n-1) - 8*(2*n-1)*(2*n+1)*a(n-2). (End)
a(n) = (2*n + 1)*(4^n - binomial(2*n, n))/2.
a(n+1) - 4*a(n) = A164991(2*n+3).

A185252 a(n) = Sum_{k=0..ceiling(n/2)} k*binomial(n,k).

Original entry on oeis.org

0, 1, 2, 9, 16, 55, 96, 294, 512, 1467, 2560, 7018, 12288, 32630, 57344, 148620, 262144, 666451, 1179648, 2952258, 5242880, 12949986, 23068672, 56346964, 100663296, 243517150, 436207616, 1046377764, 1879048192, 4474004812, 8053063680, 19047319832, 34359738368
Offset: 0

Views

Author

M. F. Hasler, Jan 24 2012

Keywords

Programs

  • Mathematica
    Table[Sum[k Binomial[n, k], {k, 0, Ceiling[n/2]}], {n, 0, 50}] (* G. C. Greubel, Jun 25 2017 *)
  • PARI
    a(n)=sum(k=0,(n+1)\2,k*binomial(n,k))

Formula

a(2*n) = A185251(2*n).
Showing 1-2 of 2 results.